RESUMEN
Cells have developed a highly regulated system for the uptake, transport, utilization, storage, and export of metals, ensuring the maintenance of cellular homeostasis. Small extracellular vesicles (sEVs) function as a mechanism through which a cell can export its cargo and transfer it to recipient cells. However, in contrast to the other molecular cargo associated with sEVs, the metal content of sEVs is not well characterized. To address this gap in knowledge, we measured the levels of nine essential metals (copper, iron, zinc, manganese, magnesium, potassium, calcium, chromium, cobalt) and six non-essential metals (nickel, rubidium, titanium, aluminium, lithium, lead) in sEVs originating from multiple in vitro and ex vivo sources. Our findings reveal that, beyond containing redox-active essential metals and those involved in redox reactions, sEVs also exhibit the capability to export and transfer non-physiological, potentially toxic metals.
RESUMEN
Multiple sclerosis (MS) is a debilitating affliction of the central nervous system (CNS) that involves demyelination of neuronal axons and neurodegeneration resulting in disability that becomes more pronounced in progressive forms of the disease. The involvement of neurodegeneration in MS underscores the need for effective neuroprotective approaches necessitating identification of new therapeutic targets. Herein, we applied an integrated elemental analysis workflow to human MS-affected spinal cord tissue utilising multiple inductively coupled plasma-mass spectrometry methodologies. These analyses revealed shifts in atomic copper as a notable aspect of disease. Complementary gene expression and biochemical analyses demonstrated that changes in copper levels coincided with altered expression of copper handling genes and downstream functionality of cuproenzymes. Copper-related problems observed in the human MS spinal cord were largely reproduced in the experimental autoimmune encephalomyelitis (EAE) mouse model during the acute phase of disease characterised by axonal demyelination, lesion formation, and motor neuron loss. Treatment of EAE mice with the CNS-permeant copper modulating compound CuII(atsm) resulted in recovery of cuproenzyme function, improved myelination and lesion volume, and neuroprotection. These findings support targeting copper perturbations as a therapeutic strategy for MS with CuII(atsm) showing initial promise.
Asunto(s)
Cobre , Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Médula Espinal , Cobre/metabolismo , Animales , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/tratamiento farmacológico , Ratones , Humanos , Femenino , Médula Espinal/metabolismo , Médula Espinal/efectos de los fármacos , Médula Espinal/patología , Ratones Endogámicos C57BL , Compuestos Organometálicos , Complejos de Coordinación , TiosemicarbazonasRESUMEN
The strongest genetic risk factor for late-onset Alzheimer's disease (AD) is allelic variation of the APOE gene, with the following risk structure: ε4 > ε3 > ε2. The biochemical basis for this risk profile is unclear. Here, we reveal a new role for the APOE gene product, apolipoprotein E (ApoE) in regulating cellular copper homeostasis, which is perturbed in the AD brain. Exposure of ApoE target replacement (TR) astrocytes (immortalised astrocytes from APOE knock-in mice) to elevated copper concentrations resulted in exacerbated copper accumulation in ApoE4- compared to ApoE2- and ApoE3-TR astrocytes. This effect was also observed in SH-SY5Y neuroblastoma cells treated with conditioned medium from ApoE4-TR astrocytes. Increased intracellular copper levels in the presence of ApoE4 may be explained by reduced levels and delayed trafficking of the copper transport protein, copper-transporting ATPase 1 (ATP7A/Atp7a), potentially leading to impaired cellular copper export. This new role for ApoE in copper regulation lends further biochemical insight into how APOE genotype confers risk for AD and reveals a potential contribution of ApoE4 to the copper dysregulation that is a characteristic pathological feature of the AD brain.
Asunto(s)
Apolipoproteína E4 , Astrocitos , Proteínas de Transporte de Catión , Cobre , Cobre/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Animales , Humanos , Ratones , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/genética , ATPasas Transportadoras de Cobre/metabolismo , ATPasas Transportadoras de Cobre/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética , Línea Celular Tumoral , Ratones Transgénicos , Células CultivadasRESUMEN
The Alzheimer's disease (AD)-affected brain purges K with concurrently increasing serum K, suggesting brain-blood K transferal. Here, natural stable K isotope ratios-δ41K-of human serum samples were characterized in an AD biomarker pilot study (plus two paired Li-heparin and potassium ethylenediaminetetraacetic acid [K-EDTA] plasma samples). AD serum was found to have a significantly lower mean δ41K relative to controls. To mechanistically explore this change, novel ab initio calculations (density functional theory) of relative K isotope compositions between hydrated K+ and organically bound K were performed, identifying hydrated K+ as isotopically light (lower δ41K) compared to organically bound K. Taken together with literature, serum δ41K and density functional theory results are consistent with efflux of hydrated K+ from the brain to the bloodstream, manifesting a measurable decrease in serum δ41K. These data introduce serum δ41K for further investigation as a minimally invasive AD biomarker, with cost, scalability, and stability advantages over current techniques.
Asunto(s)
Enfermedad de Alzheimer , Biomarcadores , Potasio , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/metabolismo , Humanos , Biomarcadores/sangre , Potasio/sangre , Anciano , Masculino , Femenino , Isótopos/sangre , Anciano de 80 o más Años , Proyectos Piloto , Persona de Mediana EdadRESUMEN
BACKGROUND: The associations between mood disorders (anxiety and depression) and mild cognitive impairment (MCI) or Alzheimer's dementia (AD) remain unclear. METHODS: Data from the Australian Imaging, Biomarker & Lifestyle (AIBL) study were subjected to logistic regression to determine both cross-sectional and longitudinal associations between anxiety/depression and MCI/AD. Effect modification by selected covariates was analysed using the likelihood ratio test. RESULTS: Cross-sectional analysis was performed to explore the association between anxiety/depression and MCI/AD among 2,209 participants with a mean [SD] age of 72.3 [7.4] years, of whom 55.4% were female. After adjusting for confounding variables, we found a significant increase in the odds of AD among participants with two mood disorders (anxiety: OR 1.65 [95% CI 1.04-2.60]; depression: OR 1.73 [1.12-2.69]). Longitudinal analysis was conducted to explore the target associations among 1,379 participants with a mean age of 71.2 [6.6] years, of whom 56.3% were female. During a mean follow-up of 5.0 [4.2] years, 163 participants who developed MCI/AD (refer to as PRO) were identified. Only anxiety was associated with higher odds of PRO after adjusting for covariates (OR 1.56 [1.03-2.39]). However, after additional adjustment for depression, the association became insignificant. Additionally, age, sex, and marital status were identified as effect modifiers for the target associations. CONCLUSION: Our study provides supportive evidence that anxiety and depression impact on the evolution of MCI/AD, which provides valuable epidemiological insights that can inform clinical practice, guiding clinicians in offering targeted dementia prevention and surveillance programs to the at-risk populations.
Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Depresión , Humanos , Femenino , Masculino , Australia/epidemiología , Anciano , Enfermedad de Alzheimer/epidemiología , Enfermedad de Alzheimer/psicología , Estudios Transversales , Disfunción Cognitiva/epidemiología , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/psicología , Disfunción Cognitiva/etiología , Depresión/epidemiología , Ansiedad/epidemiología , Estilo de Vida , Biomarcadores , Estudios Longitudinales , Anciano de 80 o más Años , Persona de Mediana Edad , Factores de RiesgoRESUMEN
The copper compound CuII(atsm) has progressed to phase 2/3 testing for treatment of the neurodegenerative disease amyotrophic lateral sclerosis (ALS). CuII(atsm) is neuroprotective in mutant SOD1 mouse models of ALS where its activity is ascribed in part to improving availability of essential copper. However, SOD1 mutations cause only ~ 2% of ALS cases and therapeutic relevance of copper availability in sporadic ALS is unresolved. Herein we assessed spinal cord tissue from human cases of sporadic ALS for copper-related changes. We found that when compared to control cases the natural distribution of spinal cord copper was disrupted in sporadic ALS. A standout feature was decreased copper levels in the ventral grey matter, the primary anatomical site of neuronal loss in ALS. Altered expression of genes involved in copper handling indicated disrupted copper availability, and this was evident in decreased copper-dependent ferroxidase activity despite increased abundance of the ferroxidases ceruloplasmin and hephaestin. Mice expressing mutant SOD1 recapitulate salient features of ALS and the unsatiated requirement for copper in these mice is a biochemical target for CuII(atsm). Our results from human spinal cord indicate a therapeutic mechanism of action for CuII(atsm) involving copper availability may also be pertinent to sporadic cases of ALS.
Asunto(s)
Esclerosis Amiotrófica Lateral , Complejos de Coordinación , Enfermedades Neurodegenerativas , Tiosemicarbazonas , Humanos , Ratones , Animales , Cobre/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Ratones Transgénicos , Médula Espinal/metabolismo , Ceruloplasmina/metabolismo , Modelos Animales de EnfermedadRESUMEN
Ferroptosis, an intricately regulated form of cell death characterized by uncontrolled lipid peroxidation, has garnered substantial interest since this term was first coined in 2012. Recent years have witnessed remarkable progress in elucidating the detailed molecular mechanisms that govern ferroptosis induction and defence, with particular emphasis on the roles of heterogeneity and plasticity. In this Review, we discuss the molecular ecosystem of ferroptosis, with implications that may inform and enable safe and effective therapeutic strategies across a broad spectrum of diseases.
Asunto(s)
Ferroptosis , Peroxidación de Lípido , Ferroptosis/genética , Humanos , Animales , Transducción de Señal , Especies Reactivas de Oxígeno/metabolismo , Hierro/metabolismoRESUMEN
BACKGROUND: Ferroptosis is a form of regulated cell death characterised by lipid peroxidation as the terminal endpoint and a requirement for iron. Although it protects against cancer and infection, ferroptosis is also implicated in causing neuronal death in degenerative diseases of the central nervous system (CNS). The precise role for ferroptosis in causing neuronal death is yet to be fully resolved. METHODS: To elucidate the role of ferroptosis in neuronal death we utilised co-culture and conditioned medium transfer experiments involving microglia, astrocytes and neurones. We ratified clinical significance of our cell culture findings via assessment of human CNS tissue from cases of the fatal, paralysing neurodegenerative condition of amyotrophic lateral sclerosis (ALS). We utilised the SOD1G37R mouse model of ALS and a CNS-permeant ferroptosis inhibitor to verify pharmacological significance in vivo. RESULTS: We found that sublethal ferroptotic stress selectively affecting microglia triggers an inflammatory cascade that results in non-cell autonomous neuronal death. Central to this cascade is the conversion of astrocytes to a neurotoxic state. We show that spinal cord tissue from human cases of ALS exhibits a signature of ferroptosis that encompasses atomic, molecular and biochemical features. Further, we show the molecular correlation between ferroptosis and neurotoxic astrocytes evident in human ALS-affected spinal cord is recapitulated in the SOD1G37R mouse model where treatment with a CNS-permeant ferroptosis inhibitor, CuII(atsm), ameliorated these markers and was neuroprotective. CONCLUSIONS: By showing that microglia responding to sublethal ferroptotic stress culminates in non-cell autonomous neuronal death, our results implicate microglial ferroptotic stress as a rectifiable cause of neuronal death in neurodegenerative disease. As ferroptosis is currently primarily regarded as an intrinsic cell death phenomenon, these results introduce an entirely new pathophysiological role for ferroptosis in disease.
Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Ratones , Animales , Humanos , Microglía/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Superóxido Dismutasa-1/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Muerte Celular , Modelos Animales de EnfermedadRESUMEN
BACKGROUND AND PURPOSE: Magnetic resonance spectroscopy (MRS) measures neurochemicals in vivo. Glutathione (GSH) is a neuroprotective chemical shown to vary significantly in patients with Alzheimer's disease (AD). This work investigates the reproducibility of GSH measures in the mesial temporal lobe (MTL) to identify its potential clinical utility. METHODS: MRS data were acquired from eight healthy volunteers (31.1 ± 5.2 years; 4 male/female) using Mescher-Garwood-Point Resolved Spectroscopy (MEGA-PRESS) from the MTL in the left hemisphere across two scan sessions in the same visit. Total N-acetylaspartate (tNAA), choline (tCho), creatine (tCr), and GSH were quantified. Reproducibility of quantifications of these neurochemicals were tested using coefficient of variance (CV) between scan sessions. Reproducibility of voxel placement on the left MTL was calculated by measuring the tissue overlap and percent of hippocampus within that voxel. CV measured across different scan sessions in each individual, with a CV<15% was accepted as "good" reproducibility. Paired t-tests were carried out to establish the significant differences between the two scans across each individual with p<.05 as significant. RESULTS: TNAA (%CV = 7.2; p = .5), tCr (%CV = 7.8; p = .6) and tCho (%CV = 9.3; p = .4), and GSH (%CV = 22; p = .1). The dice coefficient that reflects the level of overlap of hippocampal tissue in the voxel was shown to be 0.8 ± 0.1. Voxel tissue composition were: Scan 1 (cerebrospinal fluid [CSF]: 5 ± 1%, white matter [WM]: 52 ± 3%, gray matter [GM]: 43 ± 3%); Scan 2 (CSF: 5 ± 1%, WM: 52 ± 4%, GM: 44 ± 4%). CONCLUSION: The data suggest measures of abundant metabolites in the MTL using the MEGA-PRESS sequence has a high reproducibility. Reproducibility of GSH in this area was poorer requiring care when interpreting measures of GSH in the MTL for clinical translational purposes.
Asunto(s)
Glutatión , Lóbulo Temporal , Humanos , Masculino , Femenino , Reproducibilidad de los Resultados , Espectroscopía de Resonancia Magnética/métodos , Lóbulo Temporal/diagnóstico por imagen , Glutatión/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismoRESUMEN
A great deal of nanocarriers have been applied to induce ferroptosis in cancer research, yet there are limited examples of nanocarrier formulations to rescue ferroptosis, which can be applied to neurodegeneration, inflammation, liver damage, kidney disease, and more. Here, we present the synthesis, characterization, and in vitro evaluation of pH-responsive, core-cross-linked micelle (CCM) ferrostatin-1 (Fer-1) conjugates with amine, valproic acid, and biotin surface chemistries. Fer-1 release from stable and defined CCM Fer-1 conjugates was quantified, highlighting the sustained release for 24 h. CCM Fer-1 conjugates demonstrated excellent ferroptosis rescue by their antilipid peroxidation activity in a diverse set of cell lines in vitro. Additionally, CCMs showed tunable cell association in SH-SY5Y and translocation across an in vitro blood-brain barrier (BBB) model, highlighting potential brain disease applications. Overall, here, we present a polymeric Fer-1 delivery system to enhance Fer-1 action, which could help in improving Fer-1 action in the treatment of ferroptosis-related diseases.
Asunto(s)
Micelas , Neuroblastoma , Humanos , Oxazoles , Línea Celular , AntígenosRESUMEN
BACKGROUND: Current antidepressants have limitations due to insufficient efficacy and delay before improvement in symptoms. Polymorphisms of the serotonin transporter (5-HTT) gene have been linked to depression (when combined with stressful life events) and altered response to selective serotonergic reuptake inhibitors. We have previously revealed the antidepressant-like properties of the iron chelator deferiprone in the 5-HTT knock-out (KO) mouse model of depression. Furthermore, deferiprone was found to alter neural activity in the prefrontal cortex of both wild-type (WT) and 5-HTT KO mice. METHODS: In the current study, we examined the molecular effects of acute deferiprone treatment in the prefrontal cortex of both genotypes via phosphoproteomics analysis. RESULTS: In WT mice treated with deferiprone, there were 22 differentially expressed phosphosites, with gene ontology analysis implicating cytoskeletal proteins. In 5-HTT KO mice treated with deferiprone, we found 33 differentially expressed phosphosites. Gene ontology analyses revealed phosphoproteins that were predominantly involved in synaptic and glutamatergic signalling. In a drug-naïve cohort (without deferiprone administration), the analysis revealed 21 differentially expressed phosphosites in 5-HTT KO compared to WT mice. We confirmed the deferiprone-induced increase in tyrosine hydroxylase serine 40 residue phosphorylation (pTH-Ser40) (initially revealed in our phosphoproteomics study) by Western blot analysis, with deferiprone increasing pTH-Ser40 expression in WT and 5-HTT KO mice. CONCLUSION: As glutamatergic and synaptic signalling are dysfunctional in 5-HTT KO mice (and are the target of fast-acting antidepressant drugs such as ketamine), these molecular effects may underpin deferiprone's antidepressant-like properties. Furthermore, dopaminergic signalling may also be involved in deferiprone's antidepressant-like properties.
Asunto(s)
Antidepresivos , Hierro , Humanos , Animales , Ratones , Deferiprona , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Transducción de Señal , Quelantes del Hierro/farmacología , Ratones NoqueadosRESUMEN
OBJECTIVE: Filipin complex is an autooxidation-prone fluorescent histochemical stain used in the diagnosis of Niemann-Pick Disease Type C (NP-C), a neurodegenerative lysosomal storage disorder. It is also widely used by researchers examining the distribution and accumulation of unesterified cholesterol in cell and animal models of neurodegenerative diseases including NP-C and Sanfilippo syndrome (mucopolysaccharidosis IIIA; MPS IIIA). Recently, it has been suggested to be useful in studying Alzheimer's and Huntington's disease. Given filipin's susceptibility to photobleaching, we sought to establish a quantitative biochemical method for free cholesterol measurement. METHODS: Brain tissue from mice with MPS IIIA was stained with filipin. Total and free cholesterol in brain homogenates was measured using a commercially available kit and a quantitative LC-MS/MS assay was developed. Gangliosides GM1, GM2 and GM3 were also quantified using LC-MS/MS. RESULTS: As anticipated, the MPS IIIA mouse brain displayed large numbers of filipin-positive intra-cytoplasmic inclusions, presumptively endo-lysosomes. Challenging the prevailing dogma, however, we found no difference in the amount of free cholesterol in MPS IIIA mouse brain homogenates cf. control tissue, using either the fluorometric kit or LC-MS/MS assay. Filipin has previously been reported to bind to GM1 ganglioside, however, this lipid does not accumulate in MPS IIIA cells/tissues. Using a fluorometric assay, we demonstrate for the first time that filipin cross-reacts with both GM2 and GM3 gangliosides, explaining the filipin-reactive inclusions observed in MPS IIIA brain cells. CONCLUSION: Filipin is not specific for free cholesterol, and positive staining in any setting should be interpreted with caution.
RESUMEN
Tau protein is implicated in the pathogenesis of Alzheimer's disease (AD) and other tauopathies, but its physiological function is in debate. Mostly explored in the brain, tau is also expressed in the pancreas. We further explored the mechanism of tau's involvement in the regulation of glucose-stimulated insulin secretion (GSIS) in islet ß-cells, and established a potential relationship between type 2 diabetes mellitus (T2DM) and AD. We demonstrate that pancreatic tau is crucial for insulin secretion regulation and glucose homeostasis. Tau levels were found to be elevated in ß-islet cells of patients with T2DM, and loss of tau enhanced insulin secretion in cell lines, drosophila, and mice. Pharmacological or genetic suppression of tau in the db/db diabetic mouse model normalized glucose levels by promoting insulin secretion and was recapitulated by pharmacological inhibition of microtubule assembly. Clinical studies further showed that serum tau protein was positively correlated with blood glucose levels in healthy controls, which was lost in AD. These findings present tau as a common therapeutic target between AD and T2DM.
Asunto(s)
Enfermedad de Alzheimer , Diabetes Mellitus Tipo 2 , Humanos , Ratones , Animales , Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Secreción de Insulina , Proteínas tau/metabolismo , Páncreas/metabolismo , Páncreas/patología , Glucosa/metabolismo , Enfermedad de Alzheimer/metabolismoRESUMEN
Lipids play a significant role in maintaining central nervous system (CNS) structure and function, and the dysregulation of lipid metabolism is known to occur in many neurological disorders, including Alzheimer's disease. Here we review what is currently known about lipid dyshomeostasis in Alzheimer's disease. We propose that small extracellular vesicle (sEV) lipids may provide insight into the pathophysiology and progression of Alzheimer's disease. This stems from the recognition that sEV likely contributes to disease pathogenesis, but also an understanding that sEV can serve as a source of potential biomarkers. While the protein and RNA content of sEV in the CNS diseases have been studied extensively, our understanding of the lipidome of sEV in the CNS is still in its infancy.
RESUMEN
BACKGROUND: Anorexia nervosa (AN) is a potentially fatal psychiatric condition, associated with structural brain changes such as gray matter volume loss. The pathophysiological mechanisms for these changes are not yet fully understood. Iron is a crucial element in the development and function of the brain. Considering the systemic alterations in iron homeostasis in AN, we hypothesized that brain iron would be altered as a possible factor associated with structural brain changes in AN. METHODS: In this study, we used quantitative susceptibility mapping (QSM) magnetic resonance imaging to investigate brain iron in current AN (c-AN) and weight-restored AN compared with healthy individuals. Whole-brain voxel wise comparison was used to probe areas with possible group differences. Further, the thalamus, caudate nucleus, putamen, nucleus accumbens, hippocampus, and amygdala were selected as the regions of interest (ROIs) for ROI-based comparison of mean QSM values. RESULTS: Whole-brain voxel-wise and ROI-based comparison of QSM did not reveal any differences between groups. Exploratory analyses revealed a correlation between higher regional QSM (higher iron) and lower body mass index, higher illness severity, longer illness duration, and younger age at onset in the c-AN group. CONCLUSIONS: This study did not find evidence of altered brain iron in AN compared to healthy individuals. However, the correlations between clinical variables and QSM suggest a link between brain iron and weight status or biological processes in AN, which warrants further investigation.
RESUMEN
P-glycoprotein (P-gp), expressed at the blood-brain barrier (BBB), is critical in preventing brain access to substrate drugs and effluxing amyloid beta (Aß), a contributor to Alzheimer's disease (AD). Strategies to regulate P-gp expression therefore may impact central nervous system (CNS) drug delivery and brain Aß levels. As we have demonstrated that the copper complex copper diacetyl bis(4-methyl-3-thiosemicarbazone) (Cu(ATSM)) increases P-gp expression and function in human brain endothelial cells, the present study assessed the impact of Cu(ATSM) on expression and function of P-gp in mouse brain endothelial cells (mBECs) and capillaries in vivo, as well as in peripheral organs. Isolated mBECs treated with Cu(ATSM) (100 nM for 24 h) exhibited a 1.6-fold increase in P-gp expression and a 20% reduction in accumulation of the P-gp substrate rhodamine 123. Oral administration of Cu(ATSM) (30 mg/kg/day) for 28 days led to a 1.5 & 1.3-fold increase in brain microvascular and hepatic expression of P-gp, respectively, and a 20% reduction in BBB transport of [3H]-digoxin. A metallomic analysis showed a 3.5 and 19.9-fold increase in Cu levels in brain microvessels and livers of Cu(ATSM)-treated mice. Our findings demonstrate that Cu(ATSM) increases P-gp expression and function at the BBB in vivo, with implications for CNS drug delivery and clearance of Aß in AD.
RESUMEN
Vitamin A (retinol) is a lipid-soluble vitamin that acts as a precursor for several bioactive compounds, such as retinaldehyde (retinal) and isomers of retinoic acid. Retinol and all-trans-retinoic acid (atRA) penetrate the blood-brain barrier and are reported to be neuroprotective in several animal models. We characterised the impact of retinol and its metabolites, all-trans-retinal (atRAL) and atRA, on ferroptosis-a programmed cell death caused by iron-dependent phospholipid peroxidation. Ferroptosis was induced by erastin, buthionine sulfoximine or RSL3 in neuronal and non-neuronal cell lines. We found that retinol, atRAL and atRA inhibited ferroptosis with a potency superior to α-tocopherol, the canonical anti-ferroptotic vitamin. In contrast, we found that antagonism of endogenous retinol with anhydroretinol sensitises ferroptosis induced in neuronal and non-neuronal cell lines. Retinol and its metabolites atRAL and atRA directly interdict lipid radicals in ferroptosis since these compounds displayed radical trapping properties in a cell-free assay. Vitamin A, therefore, complements other anti-ferroptotic vitamins, E and K; metabolites of vitamin A, or agents that alter their levels, may be potential therapeutics for diseases where ferroptosis is implicated.
Asunto(s)
Ferroptosis , Vitamina A , Animales , Vitamina A/farmacología , Peroxidación de Lípido/fisiología , Tretinoina/farmacología , Vitaminas , Retinaldehído , LípidosRESUMEN
Significance: The lack of disease-modifying treatments for Alzheimer's disease (AD) that substantially alter the course of the disease highlights the need for new biological models of disease progression and neurodegeneration. Oxidation of macromolecules within the brain, including lipids, proteins, and DNA, is believed to contribute to AD pathophysiology, concomitant with dysregulation of redox-active metals, such as iron. Creating a unified model of pathogenesis and progression underpinned by iron dysregulation and redox dysregulation in AD could lead to new therapeutic targets with disease-modifying potential. Recent Advances: Ferroptosis, which was named in 2012, is a necrotic form of regulated cell death that depends on both iron and lipid peroxidation. While it is distinct from other types of regulated cell death, ferroptosis is regarded as being mechanistically synonymous with oxytosis. The ferroptosis paradigm has great explanatory potential in describing how neurons degenerate and die in AD. At the molecular level, ferroptosis is executed by the lethal accumulation of phospholipid hydroperoxides generated by the iron-dependent peroxidation of polyunsaturated fatty acids, while the major defensive protein against ferroptosis is the selenoenzyme, glutathione peroxidase 4 (GPX4). An expanding network of protective proteins and pathways have also been identified to complement GPX4 in the protection of cells against ferroptosis, with a central role emerging for nuclear factor erythroid 2-related factor 2 (NRF2). Critical Issues: In this review, we provide a critical overview of the utility of ferroptosis and NRF2 dysfunction in understanding the iron- and lipid peroxide-associated neurodegeneration of AD. Future Directions: Finally, we discuss how the ferroptosis paradigm in AD is providing a new spectrum of therapeutic targets. Antioxid. Redox Signal. 39, 141-161.
Asunto(s)
Enfermedad de Alzheimer , Ferroptosis , Humanos , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Muerte Celular/genética , Peroxidación de Lípido/genética , Hierro/metabolismoRESUMEN
BACKGROUND: Despite overall improvement in breast cancer patient outcomes from earlier diagnosis and personalised treatment approaches, some patients continue to experience recurrence and incurable metastases. It is therefore imperative to understand the molecular changes that allow transition from a non-aggressive state to a more aggressive phenotype. This transition is governed by a number of factors. METHODS: As crosstalk with extracellular matrix (ECM) is critical for tumour cell growth and survival, we applied high throughput shRNA screening on a validated '3D on-top cellular assay' to identify novel growth suppressive mechanisms. RESULTS: A number of novel candidate genes were identified. We focused on COMMD3, a previously poorly characterised gene that suppressed invasive growth of ER + breast cancer cells in the cellular assay. Analysis of published expression data suggested that COMMD3 is normally expressed in the mammary ducts and lobules, that expression is lost in some tumours and that loss is associated with lower survival probability. We performed immunohistochemical analysis of an independent tumour cohort to investigate relationships between COMMD3 protein expression, phenotypic markers and disease-specific survival. This revealed an association between COMMD3 loss and shorter survival in hormone-dependent breast cancers and in particularly luminal-A-like tumours (ER+/Ki67-low; 10-year survival probability 0.83 vs. 0.73 for COMMD3-positive and -negative cases, respectively). Expression of COMMD3 in luminal-A-like tumours was directly associated with markers of luminal differentiation: c-KIT, ELF5, androgen receptor and tubule formation (the extent of normal glandular architecture; p < 0.05). Consistent with this, depletion of COMMD3 induced invasive spheroid growth in ER + breast cancer cell lines in vitro, while Commd3 depletion in the relatively indolent 4T07 TNBC mouse cell line promoted tumour expansion in syngeneic Balb/c hosts. Notably, RNA sequencing revealed a role for COMMD3 in copper signalling, via regulation of the Na+/K+-ATPase subunit, ATP1B1. Treatment of COMMD3-depleted cells with the copper chelator, tetrathiomolybdate, significantly reduced invasive spheroid growth via induction of apoptosis. CONCLUSION: Overall, we found that COMMD3 loss promoted aggressive behaviour in breast cancer cells.