Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neural Regen Res ; 18(12): 2564-2568, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37449590

RESUMEN

The peripheral nervous system has an extensive branching organization, and peripheral nerve injuries that ablate branch points present a complex challenge for clinical repair. Ablations of linear segments of the PNS have been extensively studied and routinely treated with autografts, acellular nerve allografts, conduits, wraps, and nerve transfers. In contrast, segmental-loss peripheral nerve injuries, in which one or more branch points are ablated so that there are three or more nerve endings, present additional complications that have not been rigorously studied or documented. This review discusses: (1) the branched anatomy of the peripheral nervous system, (2) case reports describing how peripheral nerve injuries with branched ablations have been surgically managed, (3) factors known to influence regeneration through branched nerve structures, (4) techniques and models of branched peripheral nerve injuries in animal models, and (5) conclusions regarding outcome measures and studies needed to improve understanding of regeneration through ablated branched structures of the peripheral nervous system.

2.
Front Cell Neurosci ; 16: 1055490, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36451654

RESUMEN

Segmental peripheral nerve injuries (PNI) are the most common cause of enduring nervous system dysfunction. The peripheral nervous system (PNS) has an extensive and highly branching organization. While much is known about the factors that affect regeneration through sharp bisections and linear ablations of peripheral nerves, very little has been investigated or documented about PNIs that ablate branch points. Such injuries present additional complexity compared to linear segmental defects. This study compared outcomes following ablation of a branch point with branched grafts, specifically examining how graft source and orientation of the branched graft contributed to regeneration. The model system was Lewis rats that underwent a 2.5 cm ablation that started in the sciatic nerve trunk and included the peroneal/tibial branch point. Rats received grafts that were rat sciatic autograft, inbred sciatic allograft, and inbred femoral allograft, each of which was a branched graft of 2.5 cm. Allografts were obtained from Lewis rats, which is an inbred strain. Both branches of the sciatic grafts were mixed motor and sensory while the femoral grafts were smaller in diameter than sciatic grafts and one branch of the femoral graft is sensory and the other motor. All branched grafts were sutured into the defect in two orientations dictated by which branch in the graft was sutured to the tibial vs peroneal stumps in recipients. Outcome measures include compound muscle action potentials (CMAPs) and CatWalk gait analysis throughout the recovery period, with toluidine blue for intrinsic nerve morphometry and retrograde labeling conducted at the 36-week experimental end point. Results indicate that graft source and orientation does play a significant role earlier in the regenerative process but by 36 weeks all groups showed very similar indications of regeneration across multiple outcomes.

3.
J Neuroinflammation ; 19(1): 60, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35227261

RESUMEN

We review data showing that peripheral nerve injuries (PNIs) that involve the loss of a nerve segment are the most common type of traumatic injury to nervous systems. Segmental-loss PNIs have a poor prognosis compared to other injuries, especially when one or more mixed motor/sensory nerves are involved and are typically the major source of disability associated with extremities that have sustained other injuries. Relatively little progress has been made, since the treatment of segmental loss PNIs with cable autografts that are currently the gold standard for repair has slow and incomplete (often non-existent) functional recovery. Viable peripheral nerve allografts (PNAs) to repair segmental-loss PNIs have not been experimentally or clinically useful due to their immunological rejection, Wallerian degeneration (WD) of anucleate donor graft and distal host axons, and slow regeneration of host axons, leading to delayed re-innervation and producing atrophy or degeneration of distal target tissues. However, two significant advances have recently been made using viable PNAs to repair segmental-loss PNIs: (1) hydrogel release of Treg cells that reduce the immunological response and (2) PEG-fusion of donor PNAs that reduce the immune response, reduce and/or suppress much WD, immediately restore axonal conduction across the donor graft and re-innervate many target tissues, and restore much voluntary behavioral functions within weeks, sometimes to levels approaching that of uninjured nerves. We review the rather sparse cellular/biochemical data for rejection of conventional PNAs and their acceptance following Treg hydrogel and PEG-fusion of PNAs, as well as cellular and systemic data for their acceptance and remarkable behavioral recovery in the absence of tissue matching or immune suppression. We also review typical and atypical characteristics of PNAs compared with other types of tissue or organ allografts, problems and potential solutions for PNA use and storage, clinical implications and commercial availability of PNAs, and future possibilities for PNAs to repair segmental-loss PNIs.


Asunto(s)
Traumatismos de los Nervios Periféricos , Polietilenglicoles , Aloinjertos/fisiología , Axones/patología , Humanos , Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos/patología , Nervio Ciático/patología , Trasplante Homólogo , Degeneración Walleriana/patología
4.
Front Neurol ; 13: 925797, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36994113

RESUMEN

Spinal cord injury (SCI) is a devastating disorder, which impacts the lives of millions of people worldwide with no clinically standardized treatment. Both pro-recovery and anti-recovery factors contribute to the overall outcome after the initial SCI. Sex is emerging as an important variable, which can affect recovery post-SCI. Contusion SCI at T10 was generated in male and female rats. Open-field Basso, Beattie, Bresnahan (BBB) behavioral test, Von Frey test, and CatWalk gate analysis were performed. Histological analysis was performed at the 45-day post-SCI end point. Male/female differences in sensorimotor function recovery, lesion size, and the recruitment of immune cells to the lesion area were measured. A group of males with less severe injuries was included to compare the outcomes for severity. Our results show that both sexes with the same injury level plateaued at a similar final score for locomotor function. Males in the less severe injury group recovered faster and plateaued at a higher BBB score compared to the more severe injury group. Von Frey tests show faster recovery of sensory function in females compared to both male groups. All three groups exhibited reduced mechanical response thresholds after SCI. The lesion area was significantly larger in the male group with severe injury than in females, as well as in males of less severe injury. No significant differences in immune cell recruitment were identified when comparing the three groups. The faster sensorimotor recovery and significantly smaller lesion area in females potentially indicate that neuroprotection against the secondary injury is a likely reason for sex-dependent differences in functional outcomes after SCI.

5.
Neural Regen Res ; 17(4): 721-727, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34472457

RESUMEN

This review addresses the accumulating evidence that live (not decellularized) allogeneic peripheral nerves are functionally and immunologically peculiar in comparison with many other transplanted allogeneic tissues. This is relevant because live peripheral nerve allografts are very effective at promoting recovery after segmental peripheral nerve injury via axonal regeneration and axon fusion. Understanding the immunological peculiarities of peripheral nerve allografts may also be of interest to the field of transplantation in general. Three topics are addressed: The first discusses peripheral nerve injury and the potential utility of peripheral nerve allografts for bridging segmental peripheral nerve defects via axon fusion and axon regeneration. The second reviews evidence that peripheral nerve allografts elicit a more gradual and less severe host immune response allowing for prolonged survival and function of allogeneic peripheral nerve cells and structures. Lastly, potential mechanisms that may account for the immunological differences of peripheral nerve allografts are discussed.

6.
Cell Transplant ; 29: 963689720923578, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32662685

RESUMEN

Absence or reduced frequency of human regulatory T cells (Tregs) can limit the control of inflammatory responses, autoimmunity, and the success of transplant engraftment. Clinical studies indicate that use of Tregs as immunotherapeutics would require billions of cells per dose. The Quantum® Cell Expansion System (Quantum system) is a hollow-fiber bioreactor that has previously been used to grow billions of functional T cells in a short timeframe, 8-9 d. Here we evaluated expansion of selected Tregs in the Quantum system using a soluble activator to compare the effects of automated perfusion with manual diffusion-based culture in flasks. Treg CD4+CD25+ cells from three healthy donors, isolated via column-free immunomagnetic negative/positive selection, were grown under static conditions and subsequently seeded into Quantum system bioreactors and into T225 control flasks in an identical culture volume of PRIME-XV XSFM medium with interleukin-2, for a 9-d expansion using a soluble anti-CD3/CD28/CD2 monoclonal antibody activator complex. Treg harvests from three parallel expansions produced a mean of 3.95 × 108 (range 1.92 × 108 to 5.58 × 108) Tregs in flasks (mean viability 71.3%) versus 7.00 × 109 (range 3.57 × 109 to 13.00 × 109) Tregs in the Quantum system (mean viability 91.8%), demonstrating a mean 17.7-fold increase in Treg yield for the Quantum system over that obtained in flasks. The two culture processes gave rise to cells with a memory Treg CD4+CD25+FoxP3+CD45RO+ phenotype of 93.7% for flasks versus 97.7% for the Quantum system. Tregs from the Quantum system demonstrated an 8-fold greater interleukin-10 stimulation index than cells from flask culture following restimulation. Quantum system-expanded Tregs proliferated, maintained their antigenic phenotype, and suppressed effector immune cells after cryopreservation. We conclude that an automated perfusion bioreactor can support the scale-up expansion of functional Tregs more efficiently than diffusion-based flask culture.


Asunto(s)
Inmunoterapia/métodos , Linfocitos T Reguladores/inmunología , Humanos , Perfusión , Fenotipo
7.
Eur J Neurosci ; 52(10): 4385-4394, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32449561

RESUMEN

Peripheral nerves (PNs) are frequently injured as a result of trauma or disease. Development of therapies to regenerate PNs requires the use of animal models, typically beginning in rodents and progressing to larger species. There are several large animal models of PN regeneration that each has their benefits and drawbacks. Sheep have been used in PN studies due to their similarities in body weight to humans and the ease and lesser expense in their care and housing relative to other species. We have investigated the use of sheep for studies of PN regeneration and have developed and tested an injury model in the peroneal branch of the sciatic nerve. Three experimental groups were tested on mature sheep: a bisection; a 5-cm reverse autograft; and sham surgery. Protocols were developed for the post-operative care for animals with this injury, and regeneration was tracked for extended time points via compound muscle action potentials (CMAPs) and endpoint assessments of nerve morphometry, muscle mass and muscle fibrosis. Results indicate the practical viability of this PN injury model and show distinctions in the degree and rate of regeneration between bisection and reverse autograft that persisted 14 months. This long-term study shows bisections lead to significantly improved CMAPS and muscle mass and lesser muscle fibrosis as compared to reverse autograft. The persistence of these discernable changes between two relatively similar experimental groups out to extended time points is an indication of the sensitivity of this nerve section and its potential applicability for comparative studies.


Asunto(s)
Traumatismos de los Nervios Periféricos , Nervio Ciático , Animales , Modelos Animales , Regeneración Nerviosa , Nervio Peroneo , Ovinos , Trasplante Autólogo
8.
J Neurotrauma ; 37(18): 1954-1962, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32316850

RESUMEN

Glycosylation is a fundamental cellular process that has a dramatic impact on the functionality of glycoconjugates such as proteins or lipids and mediates many different biological interactions including cell migration, cellular signaling, and synaptic interactions in the nervous system. In spinal cord injury (SCI), all of these cellular processes are altered, but the potential contributions of glycosylation changes to these alterations has not been thoroughly investigated. We studied the glycosylation of injured spinal cord tissue from rats that received a contusion SCI. The N- and O-linked glycosylation was assessed at 3 and 14 days post-injury (DPI), and compared with uninjured control and time-matched sham spinal tissue. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and tandem MS (MS/MS) were performed to analyze carbohydrate structures. Results revealed diverse and abundant glycosylation in all groups, with some carbohydrate structures differentially produced in SCI animals compared with uninjured controls and shams. One such change occurred in the abundance of the Sda structure, Neu5Ac-α-(2,3)-[GalNAc-ß-(1,4)-]Gal-ß-(1,4)-GlcNAc, which was increased in SCI samples compared with shams and non-injured controls. Immunohistochemistry (IHC) and western blot were performed on SCI and sham samples using the CT1 antibody, which recognizes the terminal trisaccharide of Sda with high specificity. Both of these metrics confirmed elevated Sda structure in SCI tissue, where IHC further showed that Sda is expressed mainly by microglia. The results of these studies suggest that SCI causes a significant alteration in N- and O-linked glycosylation.


Asunto(s)
Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Animales , Glicosilación , Masculino , Espectrometría de Masas/métodos , Espectrometría de Masas/normas , Microglía/metabolismo , Microglía/patología , Ratas , Ratas Sprague-Dawley , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/normas
9.
Sci Rep ; 10(1): 2762, 2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-32066802

RESUMEN

More than a quarter of a million individuals in the US live with spinal cord injury (SCI). SCI disrupts neural circuitry to vital organs in the body. Despite severe incidences of long-term peripheral complications from SCI, the cardio-metabolic consequences and divergences in sex-related responses are not well described. We examined the effects of SCI on functional recovery, cardiac structure and function, body composition, and glucose metabolism on adult female and male Sprague Dawley (SD) rats. SCI was induced at T10 via contusion. Measured outcomes include behavioral assessment, body weight, dual-energy X-ray absorptiometry (DEXA) for body composition, echocardiography for cardiac structure and function, intraperitoneal glucose tolerance test (IPGTT) for glucose metabolism, insulin tolerance test (ITT), and histology of cardiac structure at the endpoint. There was a decrease in body fat percentage in both sexes, with SCI females disproportionately affected in percent body fat change. Left ventricular internal diameter during systole (LVIDs) was decreased in SCI females more than in SCI males. No significant differences in glucose metabolism were observed up to 20 weeks post-injury (PI). These data show significant cardio-metabolic differences as a consequence of SCI and, furthermore, that sex is an underlying factor in these differences.


Asunto(s)
Ventrículos Cardíacos/metabolismo , Miocardio/metabolismo , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/metabolismo , Médula Espinal/metabolismo , Absorciometría de Fotón , Tejido Adiposo/diagnóstico por imagen , Tejido Adiposo/metabolismo , Animales , Composición Corporal , Ecocardiografía , Femenino , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Ventrículos Cardíacos/diagnóstico por imagen , Insulina/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Caracteres Sexuales , Factores Sexuales , Médula Espinal/diagnóstico por imagen , Médula Espinal/patología , Traumatismos de la Médula Espinal/diagnóstico por imagen , Traumatismos de la Médula Espinal/patología
10.
Biomaterials ; 209: 1-9, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31022556

RESUMEN

Segmental injuries to peripheral nerves (PNs) too often result in lifelong disability or pain syndromes due to a lack of restorative treatment options. For injuries beyond a critical size, a bridging device must be inserted to direct regeneration. PN allografts from immunologically incompatible donors are highly effective bridging devices but are not a regular clinical option because of the expense and health risks of systemic immunosuppression (ISN). We have developed a method to deliver a single administration of ISN localized around a PN allograft that circumvents the risks of systemic ISN. Localized ISN was provided by regulatory T cells (Tregs), a potently immunosuppressive cell type, that was delivered around a PN allograft with a poly(ethylene glycol) norbornene (PEGNB) degradable hydrogel. Tregs are released from the hydrogel over 14 d, infiltrate the graft, suppress the host immune response and facilitate regeneration of the recipient rats equal to the autograft control. Furthermore, this method was effective in a segmental PN defect that included a branch point, for which there currently exist no treatment options. These results show that localized delivery of immunosuppressive cells for PN allografts is an effective new strategy for treating segmental PN defects that can also be used to regenerate complex nerve structures.


Asunto(s)
Hidrogeles/química , Nervios Periféricos/citología , Nervios Periféricos/fisiología , Linfocitos T Reguladores/metabolismo , Animales , Regeneración Nerviosa/fisiología , Ratas , Ratas Sprague-Dawley , Trasplante Homólogo
11.
Transpl Immunol ; 53: 61-71, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30735701

RESUMEN

Allogeneic peripheral nerve (PN) transplants are an effective bridge for stimulating regeneration of segmental PN defects, but there are currently no detailed studies about the timeline and scope of the immunological response for PN allografting. In this study, the cellular immune response in PN allografts and autograft was studied during the acute and chronic phases of a 1.0 cm critical size defect in the rat sciatic nerve at 3, 7, 14, 28 and 98 days after grafting autologous or allogeneic nerves without any immunosuppressive treatment. The assessment was based on functional, histomorphometrical and immunohistochemical criteria. Results showed modestly better functional outcomes for autografts with coordinate and adaptive immune response represented by the presence of CD11c, CD3, CD4, NKp46 and CD8 cells at 3 days, CD45R positive cells and CD25 positive cells at seven and CD45R positive cells at 14 days which seems an adaptive immune response. In contrast, allograft in the early time points showed innate immune response instead of adaptive immune response until day 14, when there was some increase in cell-mediated immunity. In conclusion, in PN autografts the immune system is synchronic initiating with a more robust early innate response that more rapidly transitions to adaptive while for PN allografts the infiltration of immune cells is slower and more gradually progresses to a moderate adaptive response.


Asunto(s)
Aloinjertos/inmunología , Autoinjertos/inmunología , Nervio Ciático/trasplante , Inmunidad Adaptativa , Animales , Células Cultivadas , Femenino , Humanos , Inmunidad Celular , Inmunidad Innata , Trasplante de Órganos , Ratas , Ratas Endogámicas Lew , Ratas Sprague-Dawley
12.
J Vis Exp ; (137)2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-30035773

RESUMEN

Peripheral nerves extend throughout the body, innervating target tissues with motor or sensory axons. Due to widespread distribution, peripheral nerves are frequently damaged because of trauma or disease. As methods and strategies have been developed to assess peripheral nerve injury in animal models, function and regeneration, analyzing the morphometry of the peripheral nerve has become an essential terminal outcome measurement. Toluidine blue staining of nerve cross sections obtained from resin embedded nerve sections is a reproducible method for qualitative and quantitative assessments of peripheral nerves, enabling visualization of morphology number of axons and degree of myelination. This technique, as with many other histological methods, can be difficult to learn and master using standard written protocols. The intent of this publication is therefore to accentuate written protocols for toluidine blue staining of peripheral nerves with videography of the method, using sciatic nerves harvested from rats. In this protocol, we describe in vivo peripheral nerve fixation and collection of the tissue, and post-fixation with 2% osmium tetroxide, embedding of nerves in epoxy resin, and ultramicrotome sectioning of nerves to 1-2µm thickness. Nerve sections then transferred to a glass slide and stained with toluidine blue, after which they are quantitatively and qualitatively assessed. Examples of the most common problems are shown, as well as steps for mitigating these issues.


Asunto(s)
Técnicas Histológicas/métodos , Nervios Periféricos/diagnóstico por imagen , Cloruro de Tolonio/uso terapéutico , Animales , Ratas , Coloración y Etiquetado
13.
J Mater Sci Mater Med ; 28(5): 79, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28389905

RESUMEN

Porous conduits provide a protected pathway for nerve regeneration, while still allowing exchange of nutrients and wastes. However, pore sizes >30 µm may permit fibrous tissue infiltration into the conduit, which may impede axonal regeneration. Coating the conduit with Fibrin Glue (FG) is one option for controlling the conduit's porosity. FG is extensively used in clinical peripheral nerve repair, as a tissue sealant, filler and drug-delivery matrix. Here, we compared the performance of FG to an alternative, hyaluronic acid (HA) as a coating for porous conduits, using uncoated porous conduits and reverse autografts as control groups. The uncoated conduit walls had pores with a diameter of 60 to 70 µm that were uniformly covered by either FG or HA coatings. In vitro, FG coatings degraded twice as fast as HA coatings. In vivo studies in a 1 cm rat sciatic nerve model showed FG coating resulted in poor axonal density (993 ± 854 #/mm2), negligible fascicular area (0.03 ± 0.04 mm2), minimal percent wet muscle mass recovery (16 ± 1 in gastrocnemius and 15 ± 5 in tibialis anterior) and G-ratio (0.73 ± 0.01). Histology of FG-coated conduits showed excessive fibrous tissue infiltration inside the lumen, and fibrin capsule formation around the conduit. Although FG has been shown to promote nerve regeneration in non-porous conduits, we found that as a coating for porous conduits in vivo, FG encourages scar tissue infiltration that impedes nerve regeneration. This is a significant finding considering the widespread use of FG in peripheral nerve repair.


Asunto(s)
Materiales Biocompatibles , Adhesivo de Tejido de Fibrina/química , Ácido Hialurónico/química , Regeneración Nerviosa , Nervio Ciático/metabolismo , Animales , Fuerza Compresiva , Reactivos de Enlaces Cruzados/química , Sistemas de Liberación de Medicamentos , Femenino , Hidrogeles/química , Microscopía Electrónica de Rastreo , Músculo Esquelético/metabolismo , Polímeros/química , Porosidad , Ratas , Ratas Endogámicas Lew , Estrés Mecánico
14.
Exp Cell Res ; 351(1): 11-23, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28034673

RESUMEN

Stem and progenitor cells that exhibit significant regenerative potential and critical roles in cancer initiation and progression remain difficult to characterize. Cell fates are determined by reciprocal signaling between the cell microenvironment and the nucleus; hence parameters derived from nuclear remodeling are ideal candidates for stem/progenitor cell characterization. Here we applied high-content, single cell analysis of nuclear shape and organization to examine stem and progenitor cells destined to distinct differentiation endpoints, yet undistinguishable by conventional methods. Nuclear descriptors defined through image informatics classified mesenchymal stem cells poised to either adipogenic or osteogenic differentiation, and oligodendrocyte precursors isolated from different regions of the brain and destined to distinct astrocyte subtypes. Nuclear descriptors also revealed early changes in stem cells after chemical oncogenesis, allowing the identification of a class of cancer-mitigating biomaterials. To capture the metrology of nuclear changes, we developed a simple and quantitative "imaging-derived" parsing index, which reflects the dynamic evolution of the high-dimensional space of nuclear organizational features. A comparative analysis of parsing outcomes via either nuclear shape or textural metrics of the nuclear structural protein NuMA indicates the nuclear shape alone is a weak phenotypic predictor. In contrast, variations in the NuMA organization parsed emergent cell phenotypes and discerned emergent stages of stem cell transformation, supporting a prognosticating role for this protein in the outcomes of nuclear functions.


Asunto(s)
Antígenos Nucleares/metabolismo , Núcleo Celular/metabolismo , Transformación Celular Neoplásica , Células Madre Mesenquimatosas/citología , Proteínas Asociadas a Matriz Nuclear/metabolismo , Adipocitos/citología , Antígenos Nucleares/genética , Proteínas de Ciclo Celular , Diferenciación Celular , Línea Celular , Núcleo Celular/ultraestructura , Separación Celular/métodos , Células Cultivadas , Humanos , Células Madre Mesenquimatosas/metabolismo , Proteínas Asociadas a Matriz Nuclear/genética , Osteocitos/citología , Análisis de la Célula Individual/métodos
15.
Tissue Eng Part A ; 22(9-10): 818-26, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27102571

RESUMEN

Nerve conduits prefilled with hydrogels are frequently explored in an attempt to promote nerve regeneration. This study examines the interplay in vivo between the porosity of the conduit wall and the level of bioactivity of the hydrogel used to fill the conduit. Nerve regeneration in porous (P) or nonporous (NP) conduits that were filled with either collagen only or collagen enhanced with a covalently attached neurite-promoting peptide mimic of the glycan human natural killer cell antigen-1 (m-HNK) were compared in a 5 mm critical size defect in the mouse femoral nerve repair model. Although collagen is a cell-friendly matrix that does not differentiate between neural and nonneural cells, the m-HNK-enhanced collagen specifically promotes axon growth and appropriate motor neuron targeting. In this study, animals treated with NP conduits filled with collagen grafted with m-HNK (CollagenHNK) had the best overall functional recovery, based on a range of histomorphometric observations and parameters of functional recovery. Our data indicate that under some conditions, the use of generally cell friendly fillers such as collagen may limit nerve regeneration. This finding is significant, considering the frequent use of collagen-based hydrogels as fillers of nerve conduits.


Asunto(s)
Antígenos CD57 , Colágeno , Fémur/inervación , Hidrogeles , Regeneración Nerviosa/efectos de los fármacos , Neuritas/metabolismo , Animales , Antígenos CD57/química , Antígenos CD57/farmacología , Colágeno/química , Colágeno/farmacología , Femenino , Fémur/metabolismo , Hidrogeles/química , Hidrogeles/farmacología , Ratones , Neuritas/patología , Porosidad
16.
J Tissue Eng ; 7: 2041731416629471, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26977288

RESUMEN

Here, we report on the design of braided peripheral nerve conduits with barrier coatings. Braiding of extruded polymer fibers generates nerve conduits with excellent mechanical properties, high flexibility, and significant kink-resistance. However, braiding also results in variable levels of porosity in the conduit wall, which can lead to the infiltration of fibrous tissue into the interior of the conduit. This problem can be controlled by the application of secondary barrier coatings. Using a critical size defect in a rat sciatic nerve model, the importance of controlling the porosity of the nerve conduit walls was explored. Braided conduits without barrier coatings allowed cellular infiltration that limited nerve recovery. Several types of secondary barrier coatings were tested in animal studies, including (1) electrospinning a layer of polymer fibers onto the surface of the conduit and (2) coating the conduit with a cross-linked hyaluronic acid-based hydrogel. Sixteen weeks after implantation, hyaluronic acid-coated conduits had higher axonal density, displayed higher muscle weight, and better electrophysiological signal recovery than uncoated conduits or conduits having an electrospun layer of polymer fibers. This study indicates that braiding is a promising method of fabrication to improve the mechanical properties of peripheral nerve conduits and demonstrates the need to control the porosity of the conduit wall to optimize functional nerve recovery.

17.
Glia ; 64(2): 227-39, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26469940

RESUMEN

Astroglial dysfunction plays an important role in neurodegenerative diseases otherwise attributed to neuronal loss of function. Here we focus on the role of astroglia in ataxia-telangiectasia (A-T), a disease caused by mutations in the ataxia-telangiectasia mutated (ATM) gene. A hallmark of A-T pathology is progressive loss of cerebellar neurons, but the mechanisms that impact neuronal survival are unclear. We now provide a possible mechanism by which A-T astroglia affect the survival of cerebellar neurons. As astroglial functions are difficult to study in an in vivo setting, particularly in the cerebellum where these cells are intertwined with the far more numerous neurons, we conducted in vitro coculture experiments that allow for the generation and pharmacological manipulation of purified cell populations. Our analyses revealed that cerebellar astroglia isolated from Atm mutant mice show decreased expression of the cystine/glutamate exchanger subunit xCT, glutathione (GSH) reductase, and glutathione-S-transferase. We also found decreased levels of intercellular and secreted GSH in A-T astroglia. Metabolic labeling of l-cystine, the major precursor for GSH, revealed that a key component of the defect in A-T astroglia is an impaired ability to import this rate-limiting precursor for the production of GSH. This impairment resulted in suboptimal extracellular GSH supply, which in turn impaired survival of cerebellar neurons. We show that by circumventing the xCT-dependent import of L-cystine through addition of N-acetyl-L-cysteine (NAC) as an alternative cysteine source, we were able to restore GSH levels in A-T mutant astroglia providing a possible future avenue for targeted therapeutic intervention.


Asunto(s)
Astrocitos/metabolismo , Cerebelo/metabolismo , Glutatión/metabolismo , Homeostasis/fisiología , Acetilcisteína/metabolismo , Adolescente , Sistema de Transporte de Aminoácidos y+/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Supervivencia Celular/fisiología , Técnicas de Cocultivo , Cistina/metabolismo , Espacio Extracelular/metabolismo , Glutatión Reductasa/metabolismo , Humanos , Espacio Intracelular/metabolismo , Ratones de la Cepa 129 , Ratones Transgénicos , Mutación , Neuronas/fisiología
18.
Hum Mol Genet ; 24(22): 6331-49, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26310626

RESUMEN

Ataxia-telangiectasia (A-T) is a rare multi-system disorder caused by mutations in the ATM gene. Significant heterogeneity exists in the underlying genetic mutations and clinical phenotypes. A number of mouse models have been generated that harbor mutations in the distal region of the gene, and a recent study suggests the presence of residual ATM protein in the brain of one such model. These mice recapitulate many of the characteristics of A-T seen in humans, with the notable exception of neurodegeneration. In order to study how an N-terminal mutation affects the disease phenotype, we generated an inducible Atm mutant mouse model (Atm(tm1Mmpl/tm1Mmpl), referred to as A-T [M]) predicted to express only the first 62 amino acids of Atm. Cells derived from A-T [M] mutant mice exhibited reduced cellular proliferation and an altered DNA damage response, but surprisingly, showed no evidence of an oxidative imbalance. Examination of the A-T [M] animals revealed an altered immunophenotype consistent with A-T. In contrast to mice harboring C-terminal Atm mutations that disproportionately develop thymic lymphomas, A-T [M] mice developed lymphoma at a similar rate as human A-T patients. Morphological analyses of A-T [M] cerebella revealed no substantial cellular defects, similar to other models of A-T, although mice display behavioral defects consistent with cerebellar dysfunction. Overall, these results suggest that loss of Atm is not necessarily associated with an oxidized phenotype as has been previously proposed and that loss of ATM protein is not sufficient to induce cerebellar degeneration in mice.


Asunto(s)
Ataxia Telangiectasia/genética , Linfoma de Células T/genética , Mutación , Animales , Ataxia Telangiectasia/enzimología , Ataxia Telangiectasia/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Conducta Animal/fisiología , Proteínas de Ciclo Celular/genética , Daño del ADN , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Femenino , Estudios de Asociación Genética , Humanos , Incidencia , Linfoma de Células T/enzimología , Linfoma de Células T/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Oxidación-Reducción , Proteínas Supresoras de Tumor/genética
19.
Biomaterials ; 35(32): 8970-82, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25085857

RESUMEN

Synthetic nerve conduits represent a promising strategy to enhance functional recovery in peripheral nerve injury repair. However, the efficiency of synthetic nerve conduits is often compromised by the lack of molecular factors to create an enriched microenvironment for nerve regeneration. Here, we investigate the in vivo response of mono (MC) and bi-component (BC) fibrous conduits obtained by processing via electrospinning poly(ε-caprolactone) (PCL) and gelatin solutions. In vitro studies demonstrate that the inclusion of gelatin leads to uniform electrospun fiber size and positively influences the response of Dorsal Root Ganglia (DRGs) neurons as confirmed by the preferential extensions of neurites from DRG bodies. This behavior can be attributed to gelatin as a bioactive cue for the cultured DRG and to the reduced fibers size. However, in vivo studies in rat sciatic nerve defect model show an opposite response: MC conduits stimulate superior nerve regeneration than gelatin containing PCL conduits as confirmed by electrophysiology, muscle weight and histology. The G-ratio, 0.71 ± 0.07 for MC and 0.66 ± 0.05 for autograft, is close to 0.6, the value measured in healthy nerves. In contrast, BC implants elicited a strong host response and infiltrating tissue occluded the conduits preventing the formation of myelinated axons. Therefore, although gelatin promotes in vitro nerve regeneration, we conclude that bi-component electrospun conduits are not satisfactory in vivo due to intrinsic limits to their mechanical performance and degradation kinetics, which are essential to peripheral nerve regeneration in vivo.


Asunto(s)
Regeneración Nerviosa/efectos de los fármacos , Prótesis e Implantes , Neuropatía Ciática/terapia , Animales , Modelos Animales de Enfermedad , Femenino , Ganglios Espinales/citología , Gelatina/química , Músculo Esquelético/fisiología , Neuritas/fisiología , Tamaño de los Órganos/efectos de los fármacos , Traumatismos de los Nervios Periféricos/terapia , Nervios Periféricos/citología , Nervios Periféricos/efectos de los fármacos , Poliésteres/química , Ratas , Ratas Endogámicas Lew , Recuperación de la Función/efectos de los fármacos , Nervio Ciático/citología , Nervio Ciático/patología
20.
Tissue Eng Part A ; 20(3-4): 518-28, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24011026

RESUMEN

Following complete nerve transection, entubulation of the nerve stumps helps guide axons to reconnect distally. In this study, a biodegradable and noncytotoxic tyrosine-derived polycarbonate terpolymer composed of 89.5 mol% desaminotyrosyl tyrosine ethyl ester (DTE), 10 mol% desaminotyrosyl tyrosine (DT), and 0.5 mol% poly(ethylene glycol) (PEG, molecular weight [Mw]=1 kDa) [designated as E10-0.5(1K)] was used to fabricate conduits for peripheral nerve regeneration. These conduits were evaluated against commercially available nonporous polyethylene (PE) tubes. The two materials are characterized in vitro for differences in surface properties, and the conduits are then evaluated in vivo in a critical-sized nerve defect in the mouse femoral nerve model. Conduits were fabricated from E10-0.5(1K) in both porous [P-E10-0.5(1K)] and nonporous [NP-E10-0.5(1K)] configurations. The results illustrate that adsorption of laminin, fibronectin, and collagen type I was enhanced on E10-0.5(1K) compared to PE. In addition, in vivo the E10-0.5(1K) conduits improved functional recovery over PE conduits, producing regenerated nerves with a fivefold increase in the number of axons, and an eightfold increase in the percentage of myelinated axons. These increases were observed for both P-E10-0.5(1K) and NP-E10-0.5(1K) after 15 weeks. When conduits were removed at 7 or 14 days following implantation, an increase in Schwann cell proteins and fibrin matrix formation was observed in E10-0.5(1K) conduits over PE conduits. These results indicate that E10-0.5(1K) is a pro-regenerative material for peripheral nerves and that the porosity of P-E10-0.5(1K) conduits was inconsequential in this model of nerve injury.


Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Nervio Femoral/fisiología , Regeneración Nerviosa/fisiología , Cemento de Policarboxilato/farmacología , Polímeros/farmacología , Tirosina/farmacología , Adsorción/efectos de los fármacos , Animales , Proliferación Celular/efectos de los fármacos , Femenino , Nervio Femoral/efectos de los fármacos , Ensayo de Materiales , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Rastreo , Actividad Motora/efectos de los fármacos , Regeneración Nerviosa/efectos de los fármacos , Neuritas/efectos de los fármacos , Neuritas/metabolismo , Cemento de Policarboxilato/química , Polímeros/química , Porosidad/efectos de los fármacos , Células de Schwann/citología , Células de Schwann/efectos de los fármacos , Andamios del Tejido/química , Tirosina/química , Grabación en Video
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...