Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Expert Rev Proteomics ; 13(7): 697-705, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27269583

RESUMEN

BACKGROUND: More than one hundred reports were published about the characterization of cells from malignant and healthy tissues, as well as of endothelial cells and stem cells exposed to microgravity conditions. METHODS: We retrieved publications about microgravity related studies on each type of cells, extracted the proteins mentioned therein and analyzed them aiming to identify biological processes affected by microgravity culture conditions. RESULTS: The analysis revealed 66 different biological processes, 19 of them were always detected when papers about the four types of cells were analyzed. CONCLUSION: Since a response to the removal of gravity is common to the different cell types, some of the 19 biological processes could play a role in cellular adaption to microgravity. Applying computer programs, to extract and analyze proteins and genes mentioned in publications becomes essential for scientists interested to get an overview of the rapidly growing fields of gravitational biology and space medicine.


Asunto(s)
Proteínas/aislamiento & purificación , Proteómica , Ingravidez , Humanos , Proteínas/genética , Vuelo Espacial
2.
Proc Natl Acad Sci U S A ; 107(33): 14662-7, 2010 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-20675583

RESUMEN

Electrical cardiac forces have been previously hypothesized to play a significant role in cardiac morphogenesis and remodeling. In response to electrical forces, cultured cardiomyocytes rearrange their cytoskeletal structure and modify their gene expression profile. To translate such in vitro data to the intact heart, we used a collection of zebrafish cardiac mutants and transgenics to investigate whether cardiac conduction could influence in vivo cardiac morphogenesis independent of contractile forces. We show that the cardiac mutant dco(s226) develops heart failure and interrupted cardiac morphogenesis following uncoordinated ventricular contraction. Using in vivo optical mapping/calcium imaging, we determined that the dco cardiac phenotype was primarily due to aberrant ventricular conduction. Because cardiac contraction and intracardiac hemodynamic forces can also influence cardiac development, we further analyzed the dco phenotype in noncontractile hearts and observed that disorganized ventricular conduction could affect cardiomyocyte morphology and subsequent heart morphogenesis in the absence of contraction or flow. By positional cloning, we found that dco encodes Gja3/Cx46, a gap junction protein not previously implicated in heart formation or function. Detailed analysis of the mouse Cx46 mutant revealed the presence of cardiac conduction defects frequently associated with human heart failure. Overall, these in vivo studies indicate that cardiac electrical forces are required to preserve cardiac chamber morphology and may act as a key epigenetic factor in cardiac remodeling.


Asunto(s)
Embrión no Mamífero/fisiología , Sistema de Conducción Cardíaco/fisiología , Corazón/fisiología , Miocardio/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Conexinas/clasificación , Conexinas/genética , Conexinas/metabolismo , Electrocardiografía , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/fisiología , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Corazón/embriología , Hibridación in Situ , Ratones , Ratones Noqueados , Microscopía Confocal , Datos de Secuencia Molecular , Mutación , Filogenia , Homología de Secuencia de Aminoácido , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
3.
Nature ; 456(7224): 980-4, 2008 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-19043405

RESUMEN

MicroRNAs comprise a broad class of small non-coding RNAs that control expression of complementary target messenger RNAs. Dysregulation of microRNAs by several mechanisms has been described in various disease states including cardiac disease. Whereas previous studies of cardiac disease have focused on microRNAs that are primarily expressed in cardiomyocytes, the role of microRNAs expressed in other cell types of the heart is unclear. Here we show that microRNA-21 (miR-21, also known as Mirn21) regulates the ERK-MAP kinase signalling pathway in cardiac fibroblasts, which has impacts on global cardiac structure and function. miR-21 levels are increased selectively in fibroblasts of the failing heart, augmenting ERK-MAP kinase activity through inhibition of sprouty homologue 1 (Spry1). This mechanism regulates fibroblast survival and growth factor secretion, apparently controlling the extent of interstitial fibrosis and cardiac hypertrophy. In vivo silencing of miR-21 by a specific antagomir in a mouse pressure-overload-induced disease model reduces cardiac ERK-MAP kinase activity, inhibits interstitial fibrosis and attenuates cardiac dysfunction. These findings reveal that microRNAs can contribute to myocardial disease by an effect in cardiac fibroblasts. Our results validate miR-21 as a disease target in heart failure and establish the therapeutic efficacy of microRNA therapeutic intervention in a cardiovascular disease setting.


Asunto(s)
Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Fibroblastos/metabolismo , Sistema de Señalización de MAP Quinasas , MicroARNs/genética , Animales , Cardiomiopatías/patología , Cardiomiopatías/terapia , Línea Celular , Supervivencia Celular , Células Cultivadas , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Silenciador del Gen , Humanos , Masculino , Ratones , Ratones Transgénicos , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Ratas
4.
Am J Hum Genet ; 81(4): 700-12, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17846996

RESUMEN

The T-box transcription factor TBX22 is essential for normal craniofacial development, as demonstrated by the finding of nonsense, frameshift, splice-site, or missense mutations in patients with X-linked cleft palate (CPX) and ankyloglossia. To better understand the function of TBX22, we studied 10 different naturally occurring missense mutations that are phenotypically equivalent to loss-of-function alleles. Since all missense mutations are located in the DNA-binding T-box domain, we first investigated the preferred recognition sequence for TBX22. Typical of T-box proteins, the resulting sequence is a palindrome based around near-perfect copies of AGGTGTGA. DNA-binding assays indicate that missense mutations at or near predicted contact points with the DNA backbone compromise stable DNA-protein interactions. We show that TBX22 functions as a transcriptional repressor and that TBX22 missense mutations result in impaired repression activity. No effect on nuclear localization of TBX22 was observed. We find that TBX22 is a target for the small ubiquitin-like modifier SUMO-1 and that this modification is required for TBX22 repressor activity. Although the site of SUMO attachment at the lysine at position 63 is upstream of the T-box domain, loss of SUMO-1 modification is consistently found in all pathogenic CPX missense mutations. This implies a general mechanism linking the loss of SUMO conjugation to the loss of TBX22 function. Orofacial clefts are well known for their complex etiology and variable penetrance, involving both genetic and environmental risk factors. The sumoylation process is also subject to and profoundly affected by similar environmental stresses. Thus, we suggest that SUMO modification may represent a common pathway that regulates normal craniofacial development and is involved in the pathogenesis of both Mendelian and idiopathic forms of orofacial clefting.


Asunto(s)
Fisura del Paladar/genética , Fisura del Paladar/metabolismo , Genes Ligados a X , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Mutación Missense , Proteínas de Dominio T Box/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , ADN/genética , ADN/metabolismo , Humanos , Técnicas In Vitro , Masculino , Ratones , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Fenotipo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína SUMO-1 , Homología de Secuencia de Aminoácido , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Proteínas de Dominio T Box/metabolismo , Transcripción Genética
5.
J Biol Chem ; 282(35): 25748-59, 2007 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-17584735

RESUMEN

Tbox18 (Tbx18) and Tbox15 (Tbx15) encode a closely related pair of vertebrate-specific T-box (Tbx) transcription factors. Functional analyses in the mouse have proven the requirement of Tbx15 in skin and skeletal development and of Tbx18 in the formation of the vertebral column, the ureter, and the posterior pole of the heart. Despite the accumulation of genetic data concerning the embryological roles of these genes, it is currently unclear how Tbx18 and Tbx15 exert their function on the molecular level. Here, we have initiated a molecular analysis of Tbx18 and Tbx15 proteins and have characterized functional domains for nuclear localization, DNA binding, and transcriptional modulation. We show that both proteins homo- and heterodimerize, bind to various combinations of T half-sites, and repress transcription in a Groucho-dependent manner. Competition with activating T-box proteins may constitute one mode of action as we show that Tbx18 interacts with Gata4 and Nkx2-5 and competes Tbx5-mediated activation of the cardiac Natriuretic peptide precursor type a-promoter and that ectopic expression of Tbx18 down-regulates Tbx6-activated Delta-like 1 expression in the somitic mesoderm in vivo.


Asunto(s)
Núcleo Celular/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Represoras/metabolismo , Proteínas de Dominio T Box/metabolismo , Transcripción Genética/fisiología , Transporte Activo de Núcleo Celular/fisiología , Animales , Factor Natriurético Atrial/genética , Factor Natriurético Atrial/metabolismo , Proteínas de Unión al Calcio , Dimerización , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/metabolismo , Células HeLa , Proteína Homeótica Nkx-2.5 , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mesodermo/metabolismo , Ratones , Péptido Natriurético Tipo-C/genética , Péptido Natriurético Tipo-C/metabolismo , Unión Proteica/fisiología , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Estructura Terciaria de Proteína/fisiología , Proteínas Represoras/genética , Elementos de Respuesta/fisiología , Piel/embriología , Somitos/metabolismo , Proteínas de Dominio T Box/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Circ Res ; 98(12): 1555-63, 2006 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-16709898

RESUMEN

The venous pole of the mammalian heart is a structurally and electrically complex region, yet the lineage and molecular mechanisms underlying its formation have remained largely unexplored. In contrast to classical studies that attribute the origin of the myocardial sinus horns to the embryonic venous pole, we find that the sinus horns form only after heart looping by differentiation of mesenchymal cells of the septum transversum region into myocardium. The myocardial sinus horns and their mesenchymal precursor cells never express Nkx2-5, a transcription factor critical for heart development. In addition, lineage studies show that the sinus horns do not derive from cells previously positive for Nkx2-5. In contrast, the sinus horns express the T-box transcription factor gene Tbx18. Mice deficient for Tbx18 fail to form sinus horns from the pericardial mesenchyme and have defective caval veins, whereas the pulmonary vein and atrial structures are unaffected. Our studies define a novel heart precursor population that contributes exclusively to the myocardium surrounding the sinus horns or systemic venous tributaries of the developing heart, which are a source of congenital malformation and cardiac arrhythmias.


Asunto(s)
Diferenciación Celular , Circulación Coronaria , Corazón/embriología , Miocardio/citología , Células Madre/citología , Factores de Transcripción/deficiencia , Factores de Transcripción/fisiología , Animales , Linaje de la Célula , Desarrollo Embrionario/fisiología , Proteína Homeótica Nkx-2.5 , Proteínas de Homeodominio , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Ratones , Ratones Noqueados , Células Madre/metabolismo , Proteínas de Dominio T Box , Venas/anomalías , Venas/embriología
7.
J Clin Invest ; 116(3): 663-74, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16511601

RESUMEN

Congenital malformations of the urinary tract are a major cause of renal failure in children and young adults. They are often caused by physical obstruction or by functional impairment of the peristaltic machinery of the ureter. The underlying molecular and cellular defects are, however, poorly understood. Here we present the phenotypic characterization of a new mouse model for congenital ureter malformation that revealed the molecular pathway important for the formation of the functional mesenchymal coating of the ureter. The gene encoding the T-box transcription factor Tbx18 was expressed in undifferentiated mesenchymal cells surrounding the distal ureter stalk. In Tbx18-/- mice, prospective ureteral mesenchymal cells largely dislocalized to the surface of the kidneys. The remaining ureteral mesenchymal cells showed reduced proliferation and failed to differentiate into smooth muscles, but instead became fibrous and ligamentous tissue. Absence of ureteral smooth muscles resulted in a short hydroureter and hydronephrosis at birth. Our analysis also showed that the ureteral mesenchyme derives from a distinct cell population that is separated early in kidney development from that of other mesenchymal cells of the renal system.


Asunto(s)
Diferenciación Celular/fisiología , Mesodermo/fisiología , Factores de Transcripción/fisiología , Uréter/embriología , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/genética , Modelos Animales de Enfermedad , Tamización de Portadores Genéticos , Hidronefrosis/genética , Hidronefrosis/patología , Mesodermo/citología , Mesodermo/patología , Ratones , Ratones Noqueados , Técnicas de Cultivo de Órganos , Fenotipo , Proteínas de Dominio T Box , Factores de Transcripción/biosíntesis , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Uréter/anomalías , Uréter/citología , Uréter/patología , Urotelio/metabolismo , Urotelio/patología
8.
Genes Dev ; 18(10): 1209-21, 2004 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-15155583

RESUMEN

The compartmentalization of somites along their anterior-posterior (AP) axis is pivotal to the segmental organization of the vertebrate axial skeleton and the peripheral nervous system. Anterior and posterior somite halves contribute to different vertebral elements. They are also characterized by different proliferation rates and properties with respect to neural crest cell migration and spinal nerve passage. AP-somite polarity is generated in the anterior presomitic mesoderm by Mesp2 and Delta/Notch signaling. Here, we demonstrate that maintenance of AP-somite polarity is mediated by the T-box transcription factor Tbx18. Mice deficient for Tbx18 show expansion of pedicles with transverse processes and proximal ribs, elements derived from the posterior lateral sclerotome. AP-somite polarity is established in Tbx18 mutant embryos but is not maintained. During somite maturation, posterior somite compartments expand most likely because of posterior cells invading the anterior somite half. In the anterior lateral sclerotome, Tbx18 acts as an antiapoptotic factor. Ectopic expression experiments suggest that Tbx18 can promote anterior at the expense of posterior somite compartments. In summary, Tbx18 appears to act downstream of Mesp2 and Delta/Notch signaling to maintain the separation of anterior and posterior somite compartments.


Asunto(s)
Tipificación del Cuerpo/fisiología , Somitos/citología , Factores de Transcripción/fisiología , Animales , Secuencia de Bases , Tipificación del Cuerpo/genética , ADN/genética , Regulación del Desarrollo de la Expresión Génica , Marcación de Gen , Marcadores Genéticos , Hibridación in Situ , Ratones , Ratones Noqueados , Ratones Transgénicos , Nervios Periféricos/embriología , Columna Vertebral/anomalías , Columna Vertebral/embriología , Proteínas de Dominio T Box , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA