Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38607113

RESUMEN

Since its commercial introduction in the 1980s, inductively coupled plasma mass spectrometry (ICP-MS) has evolved to become arguably the most versatile and powerful technique for the multi-elemental and multi-isotopic analysis of metals, metalloids, and selected non-metals at ultratrace levels [...].

2.
Bioengineering (Basel) ; 11(1)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38275580

RESUMEN

Multiple Sclerosis (MS) is a neurodegenerative disease characterized by motor and non-motor symptoms, including emotional distress, anxiety, and depression. These emotional symptoms currently have a pharmacological treatment with limited effectiveness; therefore, it is necessary to delve into their relationship with other psychological, functional, or prefrontal alterations. Additionally, exploring non-pharmacological therapeutic alternatives that have shown benefits in addressing emotional distress in MS patients is essential. AIM: To establish a predictive model for the presence of anxiety and depression in MS patients, based on variables such as psychological well-being, functional activity, and prefrontal symptoms. Additionally, this study aimed to propose non-pharmacological therapeutic alternatives based on this model. MATERIALS AND METHODS: A descriptive, observational, and cross-sectional study was conducted with a sample of 64 diagnosed MS patients who underwent functional and cognitive assessments using the following questionnaires and scales: Functional Activities Questionnaire (FAQ), Acceptance and Action Questionnaire (AAQ-II), Experiences Questionnaire (EQ), Self-Compassion Scale Short Form (SCS-SF), Beck Depression Inventory II (BDI-II), State-Trait Anxiety Inventory (STAI), and Prefrontal Symptoms Inventory (PSI). RESULTS: The model showed an excellent fit to the data and indicated that psychological well-being was the most significant predictor of the criteria (ß = -0.83), followed by functional activity (ß = -0.18) and prefrontal symptoms (ß = 0.15). The latter two are negatively related to psychological well-being (ß = -0.16 and ß = -0.75, respectively). CONCLUSIONS: Low psychological well-being is the variable that most significantly predicts the presence of anxiety and depression in MS patients, followed by functional activity and prefrontal alterations. Interventions based on mindfulness and acceptance are recommended, along with nutritional interventions such as antioxidant-enriched ketogenic diets and moderate group physical exercise.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38175170

RESUMEN

Silicon dioxide (SiO2), in its amorphous form, is an approved direct food additive in the United States and has been used as an anticaking agent in powdered food products and as a stabilizer in the production of beer. While SiO2 has been used in food for many years, there is limited information regarding its particle size and size distribution. In recent years, the use of SiO2 food additive has raised attention because of the possible presence of nanoparticles. Characterization of SiO2 food additive and understanding their physicochemical properties utilizing modern analytical tools are important in the safety evaluation of this additive. Herein, we present analytical techniques to characterize some SiO2 food additives, which were obtained directly from manufacturers and distributors. Characterization of these additives was performed using dynamic light scattering (DLS), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), and single-particle inductively coupled plasma mass spectrometry (spICP-MS) after the food additive materials underwent different experimental conditions. The data obtained from DLS, spICP-MS, and electron microscopy confirmed the presence of nanosized (1-100 nm) primary particles, as well as aggregates and agglomerates of aggregates with sizes greater than 100 nm. SEM images demonstrated that most of the SiO2 food additives procured from different distributors showed similar morphology. The results provide a foundation for evaluating the nanomaterial content of regulated food additives and will help the FDA address current knowledge gaps in analyzing nanosized particles in commercial food additives.


Asunto(s)
Nanopartículas , Nanoestructuras , Dióxido de Silicio/química , Aditivos Alimentarios/análisis , Nanopartículas/química , Análisis Espectral , Tamaño de la Partícula
4.
Nanomaterials (Basel) ; 13(18)2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37764576

RESUMEN

Due to enhanced properties at the nanoscale, nanomaterials (NMs) have been incorporated into foods, food additives, and food packaging materials. Knowledge gaps related to (but not limited to) fate, transport, bioaccumulation, and toxicity of nanomaterials have led to an expedient need to expand research efforts in the food research field. While classical techniques can provide information on dilute suspensions, these techniques sample a low throughput of nanoparticles (NPs) in the suspension and are limited in the range of the measurement metrics so orthogonal techniques must be used in tandem to fill in measurement gaps. New and innovative characterization techniques have been developed and optimized for employment in food nano-characterization. Single particle inductively coupled plasma mass spectrometry, a high-throughput nanoparticle characterization technique capable of providing vital measurands of NP-containing samples such as size distribution, number concentration, and NP evolution has been employed as a characterization technique in food research since its inception. Here, we offer a short, critical review highlighting existing studies that employ spICP-MS in food research with a particular focus on method validation and trends in sample preparation and spICP-MS methodology. Importantly, we identify and address areas in research as well as offer insights into yet to be addressed knowledge gaps in methodology.

5.
Environ Sci Technol ; 56(22): 15192-15206, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36240263

RESUMEN

To fully understand the potential ecological and human health risks from nanoplastics and microplastics (NMPs) in the environment, it is critical to make accurate measurements. Similar to past research on the toxicology of engineered nanomaterials, a broad range of measurement artifacts and biases are possible when testing their potential toxicity. For example, antimicrobials and surfactants may be present in commercially available NMP dispersions, and these compounds may account for toxicity observed instead of being caused by exposure to the NMP particles. Therefore, control measurements are needed to assess potential artifacts, and revisions to the protocol may be needed to eliminate or reduce the artifacts. In this paper, we comprehensively review and suggest a next generation of control experiments to identify measurement artifacts and biases that can occur while performing NMP toxicity experiments. This review covers the broad range of potential NMP toxicological experiments, such as in vitro studies with a single cell type or complex 3-D tissue constructs, in vivo mammalian studies, and ecotoxicity experiments testing pelagic, sediment, and soil organisms. Incorporation of these control experiments can reduce the likelihood of false positive and false negative results and more accurately elucidate the potential ecological and human health risks of NMPs.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Humanos , Microplásticos/toxicidad , Plásticos/toxicidad , Artefactos , Pruebas de Toxicidad , Contaminantes Químicos del Agua/toxicidad , Mamíferos
7.
Nanoscale ; 14(12): 4690-4704, 2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35262538

RESUMEN

We describe the outcome of a large international interlaboratory study of the measurement of particle number concentration of colloidal nanoparticles, project 10 of the technical working area 34, "Nanoparticle Populations" of the Versailles Project on Advanced Materials and Standards (VAMAS). A total of 50 laboratories delivered results for the number concentration of 30 nm gold colloidal nanoparticles measured using particle tracking analysis (PTA), single particle inductively coupled plasma mass spectrometry (spICP-MS), ultraviolet-visible (UV-Vis) light spectroscopy, centrifugal liquid sedimentation (CLS) and small angle X-ray scattering (SAXS). The study provides quantitative data to evaluate the repeatability of these methods and their reproducibility in the measurement of number concentration of model nanoparticle systems following a common measurement protocol. We find that the population-averaging methods of SAXS, CLS and UV-Vis have high measurement repeatability and reproducibility, with between-labs variability of 2.6%, 11% and 1.4% respectively. However, results may be significantly biased for reasons including inaccurate material properties whose values are used to compute the number concentration. Particle-counting method results are less reproducibile than population-averaging methods, with measured between-labs variability of 68% and 46% for PTA and spICP-MS respectively. This study provides the stakeholder community with important comparative data to underpin measurement reproducibility and method validation for number concentration of nanoparticles.

8.
Nanomaterials (Basel) ; 12(4)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35215053

RESUMEN

In single particle inductively coupled plasma mass spectrometry (spICP-MS), the transport efficiency is fundamental for the correct determination of both particle number concentration and size. In the present study, transport efficiency was systematically determined on three different days with six carefully characterised gold nanoparticle (AuNP) suspensions and in seven European and US expert laboratories using different ICP-MS instruments and spICP-MS software. Both particle size-(TES)-and particle frequency-(TEF)-methods were applied. The resulting transport efficiencies did not deviate much under ideal conditions. The TEF method however systematically resulted in lower transport efficiencies. The extent of this difference (0-300% rel. difference) depended largely on the choice and storage conditions of the nanoparticle suspensions used for the determination. The TES method is recommended when the principal measurement objective is particle size. If the main aim of the measurement is the determination of the particle number concentration, the TEF approach could be preferred as it might better account for particle losses in the sample introduction system.

9.
Anal Chem ; 94(7): 3091-3102, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35144383

RESUMEN

Single particle inductively coupled plasma-mass spectrometry (spICP-MS) is an emerging technique that is capable of simultaneous measurement of the size and number concentration of metal-containing nanoparticles (NPs) at environmentally relevant levels. Although spICP-MS is widely applied to different fields, challenges remain in obtaining accurate and consistent particle number concentration (PNC) measurements. This paper presents, for the first time, a rigorous assessment of spICP-MS capabilities for measuring the PNC of gold NP (AuNP) suspensions of different sizes and coatings. The calibration of spICP-MS was accomplished with the National Institute of Standards and Technology (NIST) AuNP reference material (RM) 8013. The comparability of both spICP-MS direct and derived determination of PNC and reference PNC derived based on the mean particle size or the particle size distribution obtained by different reference sizing techniques was first assessed for NIST AuNP RM 8012, nominal diameter 30 nm. To enable a proper assessment of the accuracy of the spICP-MS results, a comprehensive estimation of the expanded uncertainty for PNC determination was carried out. Regardless of NP size or coating, a good agreement (90-110%) between spICP-MS direct determination of PNC and reported PNCs was obtained for all of the suspensions studied only when reliable in-house Au mass fractions and thorough mean particle size determinations were included in the calculation of the derived PNCs. The use of the particle size distribution over the mean size to derive PNCs resulted in larger differences for materials with a low contribution (<2%) of smaller NPs (30 nm), materials with a higher polydispersity (100 nm), or materials with two distinct subpopulations of particles (60 nm), regardless of NP coating.


Asunto(s)
Oro , Nanopartículas del Metal , Oro/química , Espectrometría de Masas/métodos , Nanopartículas del Metal/química , Tamaño de la Partícula , Análisis Espectral
10.
Sci Rep ; 12(1): 882, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35042912

RESUMEN

The present study shows the development of a novel sonochemical synthesis pathway of sub-15 nm silver nanoparticles (AgNPs) with quasi-spherical shape and high stability in aqueous suspension. Different analytical techniques such as on-line UV-Vis spectroscopy, Atomic Force Microscopy (AFM), and Transmission Electron Microscopy (TEM) were complementarily used to characterize the evolution of the properties of AgNPs synthesized with this new route. Furthermore, different centrifugation conditions were studied to establish a practical, simple and straightforward purification method. Particle size was determined by TEM employing two different deposition methods, showing that purified AgNPs have a size of 8.1 nm ± 2.4 nm with a narrow dispersion of the size distribution (95% coverage interval from 3.4 to 13 nm). Critical information of the shape and crystalline structure of these sub-15 nm AgNPs, provided by shape descriptors (circularity and roundness) using TEM and high resolution (HR)-TEM measurements, confirmed the generation of AgNPs with quasi-spherical shapes with certain twin-fault particles promoted by the high energy of the ultrasonic treatment. Elemental analysis by TEM-EDS confirmed the high purity of the sub-15 nm AgNPs, consisting solely of Ag. At the optical level, these AgNPs showed a bandgap energy of (2.795 ± 0.002) eV. Finally, the evaluation of the effects of ultraviolet radiation (UVC: 254 nm and UVA: 365 nm) and storage temperature on the spectral stability revealed high stability of the optical properties and subsequently dimensional properties of sub-15 nm AgNPs in the short-term (600 min) and long-term (24 weeks).

11.
Anal Chim Acta ; 1175: 338671, 2021 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-34330435

RESUMEN

Analytical techniques capable of determining the spatial distribution and quantity (mass and/or particle number) of engineered nanomaterials in organisms are essential for characterizing nano-bio interactions and for nanomaterial risk assessments. Here, we combine the use of dynamic secondary ion mass spectrometry (dynamic SIMS) and single particle inductively coupled mass spectrometry (spICP-MS) techniques to determine the biodistribution and quantity of gold nanoparticles (AuNPs) ingested by Caenorhabditis elegans. We report the application of SIMS in image depth profiling mode for visualizing, identifying, and characterizing the biodistribution of AuNPs ingested by nematodes in both the lateral and z (depth) dimensions. In parallel, conventional- and sp-ICP-MS quantified the mean number of AuNPs within the nematode, ranging from 2 to 36 NPs depending on the size of AuNP. The complementary data from both SIMS image depth profiling and spICP-MS provides a complete view of the uptake, translocation, and size distribution of ingested NPs within Caenorhabditis elegans.


Asunto(s)
Oro , Nanopartículas del Metal , Animales , Caenorhabditis elegans , Tamaño de la Partícula , Espectrometría de Masa de Ion Secundario , Distribución Tisular
12.
Medicina (Kaunas) ; 57(2)2021 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-33498819

RESUMEN

Background and objectives: The aim of this study was to report a case of a patient with Charcot-Marie-Tooth disease type 2 (CMT2) treated with epigallocatechin gallate (EGCG) for 4 months in order to assess its therapeutic potential in CMT2. Materials and Methods: The study included a brother and a sister who have CMT2. The sister received 800 mg of EGCG for 4 months, while her brother received placebo for the same period of time. Both participants were assessed before and after daily administration by means of anthropometry; analysis of inflammatory and oxidation markers of interleukin-6 (IL-6) and paraoxonase 1 (PON1) in the blood sample; and motor tests: 2-min walk test (2MWT), 10-m walk test (10MWT), nine-hole peg test (9HPT) and handgrip strength measurement using a handheld Jamar dynamometer. Results: Regarding muscular and motor functions associated with higher inflammation and oxidation, improvements only observed in the woman in all analysed parameters (both biochemical and clinical associated with the metabolism and functionality) after 4 months of treatment with EGCG are noteworthy. Thus, this treatment is proposed as a good candidate to treat the disease.


Asunto(s)
Catequina/análogos & derivados , Enfermedad de Charcot-Marie-Tooth , Arildialquilfosfatasa , Enfermedad de Charcot-Marie-Tooth/tratamiento farmacológico , Femenino , Fuerza de la Mano , Humanos , Masculino , Prueba de Paso
13.
Talanta ; 206: 120228, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31514892

RESUMEN

The asymmetric flow field-flow fractionation (AF4) coupled on-line with elemental (inductively coupled plasma-mass spectrometry, ICP-MS) and molecular (fluorescence and UV) detection has been investigated as a powerful tool for the characterization of bioinorganic nano-conjugates. In this study, we described methods for the characterization of biotin-antibody complexes bioconjugated with streptavidin quantum dots (QDs-SA-b-Ab). Operating parameters of AF4 separation technique were optimized and two procedures are proposed using a channel thickness of 350 µm and 500 µm. The use of a 500 µm spacer allowed to achieve an efficient AF4 separation of the QDs-SA-b-Ab complexes from the excess of individual species used in the bioconjugation that was required for a proper characterization of the bioconjugates. Optimization of the AF4 allowed a separation resolution good enough to isolate the QDs-SA-b-Ab bioconjugates from the free excess of b-Ab and QD-SA. The efficiency of the bioconjugation process could be then calculated, obtaining a value of 86% for a 1 QDs-SA: 5 b-Ab bioconjugation ratio. In addition, sample recovery around 90% was achieved.


Asunto(s)
Puntos Cuánticos/análisis , Agua/química , Anticuerpos/química , Biotina/química , Compuestos de Cadmio/análisis , Compuestos de Cadmio/química , Fluorescencia , Fraccionamiento de Campo-Flujo/métodos , Límite de Detección , Espectrometría de Masas/métodos , Puntos Cuánticos/química , Dispersión de Radiación , Compuestos de Selenio/análisis , Compuestos de Selenio/química , Estreptavidina/química , Sulfuros/análisis , Sulfuros/química , Compuestos de Zinc/análisis , Compuestos de Zinc/química
14.
Chromatographia ; 83(2): 145-147, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32831357
15.
Anal Chem ; 90(24): 14376-14386, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30472826

RESUMEN

Single particle inductively coupled plasma-mass spectrometry (spICP-MS) is an emerging technique capable of simultaneously measuring nanoparticle size and number concentration of metal-containing nanoparticles (NPs) at environmental levels. single particle ICP-MS will become an established measurement method once the metrological quality of the measurement results it produces have been proven incontrovertibly. This Article presents the first validation of spICP-MS capabilities for measuring mean NP size and number size distribution of gold nanoparticles (AuNPs). The validation is achieved by (i) calibration based on the consensus value for particle size derived from six different sizing techniques applied to National Institute of Standards and Technology (NIST) Reference Material (RM) 8013; (ii) comparison with high-resolution scanning electron microscopy (HR-SEM) used as a reference method, which is linked to the International System of Units (SI) through a calibration standard characterized by the NIST metrological atomic force microscope; and (iii) evaluation of the uncertainty associated with the measurement of the mean particle size to enable comparison of the spICP-MS and HR-SEM methods. After establishing HR-SEM and spICP-MS measurement protocols, both methods were used to characterize commercial AuNP suspensions of three different sizes (30, 60, and 100 nm) with four different coatings and surface charge at pH 7. Single particle ICP-MS measurements (corroborated by HR-SEM) revealed the existence of two distinct subpopulations of particles in the number size distributions for four of the 60 nm commercial suspensions, a fact that was not apparent in the measurement results supplied by the vendor using transmission electron microscopy. This finding illustrates the utility of spICP-MS for routine characterization of commercial AuNP suspensions regardless of size or coating.

16.
Environ Sci Technol ; 52(10): 5968-5978, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29672024

RESUMEN

The increased use and incorporation of engineered nanoparticles (ENPs) in consumer products requires a robust assessment of their potential environmental implications. However, a lack of standardized methods for nanotoxicity testing has yielded results that are sometimes contradictory. Standard ecotoxicity assays may work appropriately for some ENPs with minimal modification but produce artifactual results for others. Therefore, understanding the robustness of assays for a range of ENPs is critical. In this study, we evaluated the performance of a standard Caenorhabditis elegans ( C. elegans) toxicity assay containing an Escherichia coli ( E. coli) food supply with silicon, polystyrene, and gold ENPs with different charged coatings and sizes. Of all the ENPs tested, only those with a positively charged coating caused growth inhibition. However, the positively charged ENPs were observed to heteroagglomerate with E. coli cells, suggesting that the ENPs impacted the ability of nematodes to feed, leading to a false positive toxic effect on C. elegans growth and reproduction. When the ENPs were tested in two alternate C. elegans assays that did not contain E. coli, we found greatly reduced toxicity of ENPs. This study illustrates a key unexpected artifact that may occur during nanotoxicity assays.


Asunto(s)
Caenorhabditis elegans , Nanopartículas , Animales , Artefactos , Escherichia coli , Reproducción
17.
Nanoscale ; 9(40): 15226-15251, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-28991962

RESUMEN

Nanomedicine utilizes the remarkable properties of nanomaterials for the diagnosis, treatment, and prevention of disease. Many of these nanomaterials have been shown to have robust antioxidative properties, potentially functioning as strong scavengers of reactive oxygen species. Conversely, several nanomaterials have also been shown to promote the generation of reactive oxygen species, which may precipitate the onset of oxidative stress, a state that is thought to contribute to the development of a variety of adverse conditions. As such, the impacts of nanomaterials on biological entities are often associated with and influenced by their specific redox properties. In this review, we overview several classes of nanomaterials that have been or projected to be used across a wide range of biomedical applications, with discussion focusing on their unique redox properties. Nanomaterials examined include iron, cerium, and titanium metal oxide nanoparticles, gold, silver, and selenium nanoparticles, and various nanoscale carbon allotropes such as graphene, carbon nanotubes, fullerenes, and their derivatives/variations. Principal topics of discussion include the chemical mechanisms by which the nanomaterials directly interact with biological entities and the biological cascades that are thus indirectly impacted. Selected case studies highlighting the redox properties of nanomaterials and how they affect biological responses are used to exemplify the biologically-relevant redox mechanisms for each of the described nanomaterials.


Asunto(s)
Nanomedicina , Nanoestructuras , Depuradores de Radicales Libres/farmacología , Grafito , Humanos , Nanopartículas del Metal , Nanotubos de Carbono , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
18.
J Chromatogr A ; 1511: 59-67, 2017 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-28697934

RESUMEN

The physicochemical characterization of nanoparticles (NPs) is of paramount importance for tailoring and optimizing the properties of these materials as well as for evaluating the environmental fate and impact of the NPs. Characterizing the size and chemical identity of disperse NP sample populations can be accomplished by coupling size-based separation methods to physical and chemical detection methods. Informed decisions regarding the NPs can only be made, however, if the separations themselves are quantitative, i.e., if all or most of the analyte elutes from the column within the course of the experiment. We undertake here the size-exclusion chromatographic characterization of Au NPs spanning a six-fold range in mean size. The main problem which has plagued the size-exclusion chromatography (SEC) analysis of Au NPs, namely lack of quantitation accountability due to generally poor NP recovery from the columns, is overcome by carefully matching eluent formulation with the appropriate stationary phase chemistry, and by the use of on-line inductively coupled plasma mass spectrometry (ICP-MS) detection. Here, for the first time, we demonstrate the quantitative analysis of Au NPs by SEC/ICP-MS, including the analysis of a ternary NP blend. The SEC separations are contrasted to HDC/ICP-MS (HDC: hydrodynamic chromatography) separations employing the same stationary phase chemistry. Additionally, analysis of Au NPs by HDC with on-line quasi-elastic light scattering (QELS) allowed for continuous determination of NP size across the chromatographic profiles, circumventing issues related to the shedding of fines from the SEC columns. The use of chemically homogeneous reference materials with well-defined size range allowed for better assessment of the accuracy and precision of the analyses, and for a more direct interpretation of results, than would be possible employing less rigorously characterized analytes.


Asunto(s)
Cromatografía en Gel , Oro/química , Nanopartículas del Metal/análisis , Dispersión Dinámica de Luz , Hidrodinámica , Espectrometría de Masas , Nanopartículas del Metal/química , Tamaño de la Partícula
19.
Front Chem ; 5: 6, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28271059

RESUMEN

Silver nanoparticles (AgNPs) show different physical and chemical properties compared to their macroscale analogs. This is primarily due to their small size and, consequently, the exceptional surface area of these materials. Presently, advances in the synthesis, stabilization, and production of AgNPs have fostered a new generation of commercial products and intensified scientific investigation within the nanotechnology field. The use of AgNPs in commercial products is increasing and impacts on the environment and human health are largely unknown. This article discusses advances in AgNP production and presents an overview of the commercial, societal, and environmental impacts of this emerging nanoparticle (NP), and nanomaterials in general. Finally, we examine the challenges associated with AgNP characterization, discuss the importance of the development of NP reference materials (RMs) and explore their role as a metrological mechanism to improve the quality and comparability of NP measurements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...