Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
J Exp Med ; 221(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38563820

RESUMEN

Inborn errors of immunity lead to autoimmunity, inflammation, allergy, infection, and/or malignancy. Disease-causing JAK1 gain-of-function (GoF) mutations are considered exceedingly rare and have been identified in only four families. Here, we use forward and reverse genetics to identify 59 individuals harboring one of four heterozygous JAK1 variants. In vitro and ex vivo analysis of these variants revealed hyperactive baseline and cytokine-induced STAT phosphorylation and interferon-stimulated gene (ISG) levels compared with wild-type JAK1. A systematic review of electronic health records from the BioME Biobank revealed increased likelihood of clinical presentation with autoimmunity, atopy, colitis, and/or dermatitis in JAK1 variant-positive individuals. Finally, treatment of one affected patient with severe atopic dermatitis using the JAK1/JAK2-selective inhibitor, baricitinib, resulted in clinically significant improvement. These findings suggest that individually rare JAK1 GoF variants may underlie an emerging syndrome with more common presentations of autoimmune and inflammatory disease (JAACD syndrome). More broadly, individuals who present with such conditions may benefit from genetic testing for the presence of JAK1 GoF variants.


Asunto(s)
Colitis , Dermatitis , Hipersensibilidad , Humanos , Autoinmunidad , Colitis/genética , Inflamación , Janus Quinasa 1/genética
3.
J Clin Immunol ; 44(1): 36, 2023 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-38157076

RESUMEN

By inhibition of JAK-STAT signaling, SOCS1 acts as a master regulator of the cytokine response across numerous tissue types and cytokine pathways. Haploinsufficiency of SOCS1 has recently emerged as a monogenic immunodysregulatory disease with marked clinical variability. Here, we describe a patient with severe dermatitis, recurrent skin infections, and psoriatic arthritis that harbors a novel heterozygous mutation in SOCS1. The variant, c.202_203delAC, generates a frameshift in SOCS1, p.Thr68fsAla*49, which leads to complete loss of protein expression. Unlike WT SOCS1, Thr68fs SOCS1 fails to inhibit JAK-STAT signaling when expressed in vitro. The peripheral immune signature from this patient was marked by a redistribution of monocyte sub-populations and hyper-responsiveness to multiple cytokines. Despite this broad hyper-response across multiple cytokine pathways in SOCS1 haploinsufficiency, the patient's clinical disease was markedly responsive to targeted IL4Rα- and IL17-blocking therapy. In accordance, the mutant allele was unable to regulate IL4Rα signaling. Further, patient cells were unresponsive to IL4/IL13 while on monoclonal antibody therapy. Together, this study reports a novel SOCS1 mutation and suggests that IL4Rα blockade may serve as an unexpected, but fruitful therapeutic target for some patients with SOCS1 haploinsufficiency.


Asunto(s)
Haploinsuficiencia , Proteínas Supresoras de la Señalización de Citocinas , Humanos , Proteína 1 Supresora de la Señalización de Citocinas/genética , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Transducción de Señal , Citocinas/metabolismo , Interleucina-17/genética
5.
Nature ; 615(7951): 305-314, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36813963

RESUMEN

Down's syndrome (DS) presents with a constellation of cardiac, neurocognitive and growth impairments. Individuals with DS are also prone to severe infections and autoimmunity including thyroiditis, type 1 diabetes, coeliac disease and alopecia areata1,2. Here, to investigate the mechanisms underlying autoimmune susceptibility, we mapped the soluble and cellular immune landscape of individuals with DS. We found a persistent elevation of up to 22 cytokines at steady state (at levels often exceeding those in patients with acute infection) and detected basal cellular activation: chronic IL-6 signalling in CD4 T cells and a high proportion of plasmablasts and CD11c+TbethighCD21low B cells (Tbet is also known as TBX21). This subset is known to be autoimmune-prone and displayed even greater autoreactive features in DS including receptors with fewer non-reference nucleotides and higher IGHV4-34 utilization. In vitro, incubation of naive B cells in the plasma of individuals with DS or with IL-6-activated T cells resulted in increased plasmablast differentiation compared with control plasma or unstimulated T cells, respectively. Finally, we detected 365 auto-antibodies in the plasma of individuals with DS, which targeted the gastrointestinal tract, the pancreas, the thyroid, the central nervous system, and the immune system itself. Together, these data point to an autoimmunity-prone state in DS, in which a steady-state cytokinopathy, hyperactivated CD4 T cells and ongoing B cell activation all contribute to a breach in immune tolerance. Our findings also open therapeutic paths, as we demonstrate that T cell activation is resolved not only with broad immunosuppressants such as Jak inhibitors, but also with the more tailored approach of IL-6 inhibition.


Asunto(s)
Autoinmunidad , Linfocitos T CD4-Positivos , Citocinas , Síndrome de Down , Humanos , Autoanticuerpos/inmunología , Linfocitos B/citología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/inmunología , Citocinas/análisis , Citocinas/inmunología , Susceptibilidad a Enfermedades , Síndrome de Down/inmunología , Síndrome de Down/fisiopatología , Interleucina-6/inmunología , Receptores de Complemento 3d
6.
Immunity ; 55(11): 2074-2084.e5, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36243008

RESUMEN

Down syndrome (DS) is typically caused by triplication of chromosome 21. Phenotypically, DS presents with developmental, neurocognitive, and immune features. Epidemiologically, individuals with DS have less frequent viral infection, but when present, these infections lead to more severe disease. The potent antiviral cytokine type I Interferon (IFN-I) receptor subunits IFNAR1 and IFNAR2 are located on chromosome 21. While increased IFNAR1/2 expression initially caused hypersensitivity to IFN-I, it triggered excessive negative feedback. This led to a hypo-response to subsequent IFN-I stimuli and an ensuing viral susceptibility in DS compared to control cells. Upregulation of IFNAR2 expression phenocopied the DS IFN-I dynamics independent of trisomy 21. CD14+ monocytes from individuals with DS exhibited markers of prior IFN-I exposure and had muted responsiveness to ex vivo IFN-I stimulation. Our findings unveil oscillations of hyper- and hypo-response to IFN-I in DS, predisposing individuals to both lower incidence of viral disease and increased infection-related morbidity and mortality.


Asunto(s)
Síndrome de Down , Interferón Tipo I , Humanos , Interferón Tipo I/metabolismo , Síndrome de Down/genética , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/metabolismo , Antivirales , Susceptibilidad a Enfermedades , Receptores de Interferón/metabolismo
7.
PLoS Pathog ; 18(3): e1010405, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35333911

RESUMEN

Type I interferons (IFN-Is) are a group of potent inflammatory and antiviral cytokines. They induce IFN stimulated genes (ISGs), which act as proinflammatory mediators, antiviral effectors, and negative regulators of the IFN-I signaling cascade itself. One such regulator is interferon stimulated gene 15 (ISG15). Humans with complete ISG15 deficiency express persistently elevated levels of ISGs, and consequently, exhibit broad spectrum resistance to viral infection. Here, we demonstrate that IFN-I primed fibroblasts derived from ISG15-deficient individuals are more resistant to infection with single-cycle HIV-1 compared to healthy control fibroblasts. Complementation with both wild-type (WT) ISG15 and ISG15ΔGG (incapable of ISGylation while retaining negative regulation activity) was sufficient to reverse this phenotype, restoring susceptibility to infection to levels comparable to WT cells. Furthermore, CRISPR-edited ISG15ko primary CD4+ T cells were less susceptible to HIV-1 infection compared to cells treated with non-targeting controls. Transcriptome analysis of these CRISPR-edited ISG15ko primary CD4+ T cells recapitulated the ISG signatures of ISG15 deficient patients. Taken together, we document that the increased broad-spectrum viral resistance in ISG15-deficiency also extends to HIV-1 and is driven by a combination of T-cell-specific ISGs, with both known and unknown functions, predicted to target HIV-1 replication at multiple steps.


Asunto(s)
Citocinas , Infecciones por VIH , VIH-1 , Ubiquitinas , Antivirales/farmacología , Citocinas/genética , Infecciones por VIH/genética , Humanos , Interferón Tipo I , Ubiquitinas/genética
8.
J Exp Med ; 219(4)2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35258551

RESUMEN

Human USP18 is an interferon (IFN)-stimulated gene product and a negative regulator of type I IFN (IFN-I) signaling. It also removes covalently linked ISG15 from proteins, in a process called deISGylation. In turn, ISG15 prevents USP18 from being degraded by the proteasome. Autosomal recessive complete USP18 deficiency is life-threatening in infancy owing to uncontrolled IFN-I-mediated autoinflammation. We report three Moroccan siblings with autoinflammation and mycobacterial disease who are homozygous for a new USP18 variant. We demonstrate that the mutant USP18 (p.I60N) is normally stabilized by ISG15 and efficient for deISGylation but interacts poorly with the receptor-anchoring STAT2 and is impaired in negative regulation of IFN-I signaling. We also show that IFN-γ-dependent induction of IL-12 and IL-23 is reduced owing to IFN-I-mediated impairment of myeloid cells to produce both cytokines. Thus, insufficient negative regulation of IFN-I signaling by USP18-I60N underlies a specific type I interferonopathy, which impairs IL-12 and IL-23 production by myeloid cells, thereby explaining predisposition to mycobacterial disease.


Asunto(s)
Ubiquitina Tiolesterasa , Ubiquitinas , Citocinas/metabolismo , Humanos , Inflamación/genética , Interleucina-12 , Interleucina-23 , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo
9.
Cell ; 184(17): 4447-4463.e20, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34363755

RESUMEN

TANK binding kinase 1 (TBK1) regulates IFN-I, NF-κB, and TNF-induced RIPK1-dependent cell death (RCD). In mice, biallelic loss of TBK1 is embryonically lethal. We discovered four humans, ages 32, 26, 7, and 8 from three unrelated consanguineous families with homozygous loss-of-function mutations in TBK1. All four patients suffer from chronic and systemic autoinflammation, but not severe viral infections. We demonstrate that TBK1 loss results in hypomorphic but sufficient IFN-I induction via RIG-I/MDA5, while the system retains near intact IL-6 induction through NF-κB. Autoinflammation is driven by TNF-induced RCD as patient-derived fibroblasts experienced higher rates of necroptosis in vitro, and CC3 was elevated in peripheral blood ex vivo. Treatment with anti-TNF dampened the baseline circulating inflammatory profile and ameliorated the clinical condition in vivo. These findings highlight the plasticity of the IFN-I response and underscore a cardinal role for TBK1 in the regulation of RCD.


Asunto(s)
Inflamación/enzimología , Proteínas Serina-Treonina Quinasas/deficiencia , Factor de Necrosis Tumoral alfa/farmacología , Células A549 , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis , Autoinmunidad/efectos de los fármacos , Encéfalo/diagnóstico por imagen , Muerte Celular/efectos de los fármacos , Citocinas/metabolismo , Enzima Desubiquitinante CYLD/metabolismo , Femenino , Células HEK293 , Homocigoto , Humanos , Quinasa I-kappa B/metabolismo , Inmunofenotipificación , Inflamación/patología , Interferón Tipo I/metabolismo , Interferón gamma/metabolismo , Mutación con Pérdida de Función/genética , Masculino , Linaje , Fosforilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Receptores de Reconocimiento de Patrones/metabolismo , Receptor Toll-Like 3/metabolismo , Transcriptoma/genética , Vesiculovirus/efectos de los fármacos , Vesiculovirus/fisiología
10.
Sci Rep ; 11(1): 12740, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-34140558

RESUMEN

The SARS-CoV-2 variants replacing the first wave strain pose an increased threat by their potential ability to escape pre-existing humoral protection. An angiotensin converting enzyme 2 (ACE2) decoy that competes with endogenous ACE2 for binding of the SARS-CoV-2 spike receptor binding domain (S RBD) and inhibits infection may offer a therapeutic option with sustained efficacy against variants. Here, we used Molecular Dynamics (MD) simulation to predict ACE2 sequence substitutions that might increase its affinity for S RBD and screened candidate ACE2 decoys in vitro. The lead ACE2(T27Y/H34A)-IgG1FC fusion protein with enhanced S RBD affinity shows greater live SARS-CoV-2 virus neutralization capability than wild type ACE2. MD simulation was used to predict the effects of S RBD variant mutations on decoy affinity that was then confirmed by testing of an ACE2 Triple Decoy that included an additional enzyme activity-deactivating H374N substitution against mutated S RBD. The ACE2 Triple Decoy maintains high affinity for mutated S RBD, displays enhanced affinity for S RBD N501Y or L452R, and has the highest affinity for S RBD with both E484K and N501Y mutations, making it a viable therapeutic option for the prevention or treatment of SARS-CoV-2 infection with a high likelihood of efficacy against variants.


Asunto(s)
Sustitución de Aminoácidos , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/metabolismo , Antivirales/farmacología , COVID-19/metabolismo , Descubrimiento de Drogas/métodos , Simulación de Dinámica Molecular , SARS-CoV-2/metabolismo , Transducción de Señal/efectos de los fármacos , Secuencia de Aminoácidos , COVID-19/virología , Humanos , Mutación , Unión Proteica/efectos de los fármacos , Dominios Proteicos/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus/efectos de los fármacos
11.
Immunity ; 53(3): 672-684.e11, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32750333

RESUMEN

Autoinflammatory disease can result from monogenic errors of immunity. We describe a patient with early-onset multi-organ immune dysregulation resulting from a mosaic, gain-of-function mutation (S703I) in JAK1, encoding a kinase essential for signaling downstream of >25 cytokines. By custom single-cell RNA sequencing, we examine mosaicism with single-cell resolution. We find that JAK1 transcription was predominantly restricted to a single allele across different cells, introducing the concept of a mutational "transcriptotype" that differs from the genotype. Functionally, the mutation increases JAK1 activity and transactivates partnering JAKs, independent of its catalytic domain. S703I JAK1 is not only hypermorphic for cytokine signaling but also neomorphic, as it enables signaling cascades not canonically mediated by JAK1. Given these results, the patient was treated with tofacitinib, a JAK inhibitor, leading to the rapid resolution of clinical disease. These findings offer a platform for personalized medicine with the concurrent discovery of fundamental biological principles.


Asunto(s)
Enfermedades Autoinflamatorias Hereditarias/genética , Enfermedades Autoinflamatorias Hereditarias/patología , Janus Quinasa 1/genética , Síndrome de Respuesta Inflamatoria Sistémica/genética , Síndrome de Respuesta Inflamatoria Sistémica/patología , Adolescente , COVID-19/mortalidad , Dominio Catalítico/genética , Línea Celular , Citocinas/metabolismo , Femenino , Mutación con Ganancia de Función/genética , Genotipo , Células HEK293 , Enfermedades Autoinflamatorias Hereditarias/tratamiento farmacológico , Humanos , Janus Quinasa 1/antagonistas & inhibidores , Mosaicismo , Piperidinas/uso terapéutico , Medicina de Precisión/métodos , Pirimidinas/uso terapéutico , Transducción de Señal/inmunología , Síndrome de Respuesta Inflamatoria Sistémica/tratamiento farmacológico
12.
Cell Rep ; 31(6): 107633, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32402279

RESUMEN

Most monogenic disorders have a primary clinical presentation. Inherited ISG15 deficiency, however, has manifested with two distinct presentations to date: susceptibility to mycobacterial disease and intracranial calcifications from hypomorphic interferon-II (IFN-II) production and excessive IFN-I response, respectively. Accordingly, these patients were managed for their infectious and neurologic complications. Herein, we describe five new patients with six novel ISG15 mutations presenting with skin lesions who were managed for dermatologic disease. Cellularly, we denote striking specificity to the IFN-I response, which was previously assumed to be universal. In peripheral blood, myeloid cells display the most robust IFN-I signatures. In the affected skin, IFN-I signaling is observed in the keratinocytes of the epidermis, endothelia, and the monocytes and macrophages of the dermis. These findings define the specific cells causing circulating and dermatologic inflammation and expand the clinical spectrum of ISG15 deficiency to dermatologic presentations as a third phenotype co-dominant to the infectious and neurologic manifestations.


Asunto(s)
Citocinas/deficiencia , Interferón Tipo I/inmunología , Piel/patología , Ubiquitinas/deficiencia , Alelos , Estudios de Casos y Controles , Niño , Preescolar , Citocinas/genética , Citocinas/inmunología , Dermatitis/genética , Dermatitis/inmunología , Dermatitis/patología , Femenino , Células HEK293 , Humanos , Lactante , Masculino , Mutación , Células Mieloides/inmunología , Células Mieloides/patología , Necrosis , Linaje , Ubiquitinas/genética , Ubiquitinas/inmunología
13.
J Exp Med ; 217(5)2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32092142

RESUMEN

Type I interferonopathies are monogenic disorders characterized by enhanced type I interferon (IFN-I) cytokine activity. Inherited USP18 and ISG15 deficiencies underlie type I interferonopathies by preventing the regulation of late responses to IFN-I. Specifically, USP18, being stabilized by ISG15, sterically hinders JAK1 from binding to the IFNAR2 subunit of the IFN-I receptor. We report an infant who died of autoinflammation due to a homozygous missense mutation (R148Q) in STAT2. The variant is a gain of function (GOF) for induction of the late, but not early, response to IFN-I. Surprisingly, the mutation does not enhance the intrinsic activity of the STAT2-containing transcriptional complex responsible for IFN-I-stimulated gene induction. Rather, the STAT2 R148Q variant is a GOF because it fails to appropriately traffic USP18 to IFNAR2, thereby preventing USP18 from negatively regulating responses to IFN-I. Homozygosity for STAT2 R148Q represents a novel molecular and clinical phenocopy of inherited USP18 deficiency, which, together with inherited ISG15 deficiency, defines a group of type I interferonopathies characterized by an impaired regulation of late cellular responses to IFN-I.


Asunto(s)
Mutación con Ganancia de Función/genética , Interferón Tipo I/metabolismo , Factor de Transcripción STAT2/genética , Ubiquitina Tiolesterasa/deficiencia , Secuencia de Aminoácidos , Secuencia de Bases , Línea Celular , Femenino , Regulación de la Expresión Génica , Homocigoto , Humanos , Recién Nacido , Masculino , Linaje , Fenotipo , Dominios Proteicos , Factor de Transcripción STAT2/química , Ubiquitina Tiolesterasa/genética , Secuenciación del Exoma
14.
N Engl J Med ; 382(3): 256-265, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31940699

RESUMEN

Deficiency of ubiquitin-specific peptidase 18 (USP18) is a severe type I interferonopathy. USP18 down-regulates type I interferon signaling by blocking the access of Janus-associated kinase 1 (JAK1) to the type I interferon receptor. The absence of USP18 results in unmitigated interferon-mediated inflammation and is lethal during the perinatal period. We describe a neonate who presented with hydrocephalus, necrotizing cellulitis, systemic inflammation, and respiratory failure. Exome sequencing identified a homozygous mutation at an essential splice site on USP18. The encoded protein was expressed but devoid of negative regulatory ability. Treatment with ruxolitinib was followed by a prompt and sustained recovery. (Funded by King Saud University and others.).


Asunto(s)
Enfermedades Autoinflamatorias Hereditarias/tratamiento farmacológico , Interferones/metabolismo , Interleucinas/metabolismo , Janus Quinasa 1/antagonistas & inhibidores , Inhibidores de las Cinasas Janus/uso terapéutico , Mutación con Pérdida de Función , Pirazoles/uso terapéutico , Ubiquitina Tiolesterasa/deficiencia , Homocigoto , Humanos , Hidrocefalia/genética , Recién Nacido , Masculino , Nitrilos , Pirimidinas , Receptores de Interferón/metabolismo , Inducción de Remisión , Choque Séptico/genética , Transducción de Señal/genética , Ubiquitina Tiolesterasa/genética , Secuenciación del Exoma
15.
Mol Immunol ; 101: 450-460, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30099227

RESUMEN

Germline mutations in the human SAMHD1 gene cause the development of Aicardi-Goutières Syndrome (AGS), with a dominant feature being increased systemic type I interferon(IFN) production. Here we tested the state of type I IFN induction and response to, in SAMHD1 knockout (KO) human monocytic cells. SAMHD1 KO cells exhibited spontaneous transcription and translation of IFN-ß and subsequent interferon-stimulated genes (ISGs) as compared to parental wild-type cells. This elevation of IFN-ß and ISGs was abrogated via inhibition of the TBK1-IRF3 pathway in the SAMHD1 KO cells. In agreement, we found that SAMHD1 KO cells present high levels of phosphorylated TBK1 when compared to control cells. Moreover, addition of blocking antibody against type I IFN also reversed elevation of ISGs. These experiments suggested that SAMHD1 KO cells are persistently auto-stimulating the TBK1-IRF3 pathway, leading to an enhanced production of type I IFN and subsequent self-induction of ISGs.


Asunto(s)
Interferón Tipo I/metabolismo , Monocitos/metabolismo , Proteína 1 que Contiene Dominios SAM y HD/deficiencia , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Monocitos/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Pirimidinas/farmacología , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Células THP-1 , Tiofenos/farmacología , Transcripción Genética/efectos de los fármacos
16.
J Exp Med ; 213(7): 1163-74, 2016 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-27325888

RESUMEN

Pseudo-TORCH syndrome (PTS) is characterized by microcephaly, enlarged ventricles, cerebral calcification, and, occasionally, by systemic features at birth resembling the sequelae of congenital infection but in the absence of an infectious agent. Genetic defects resulting in activation of type 1 interferon (IFN) responses have been documented to cause Aicardi-Goutières syndrome, which is a cause of PTS. Ubiquitin-specific peptidase 18 (USP18) is a key negative regulator of type I IFN signaling. In this study, we identified loss-of-function recessive mutations of USP18 in five PTS patients from two unrelated families. Ex vivo brain autopsy material demonstrated innate immune inflammation with calcification and polymicrogyria. In vitro, patient fibroblasts displayed severely enhanced IFN-induced inflammation, which was completely rescued by lentiviral transduction of USP18. These findings add USP18 deficiency to the list of genetic disorders collectively termed type I interferonopathies. Moreover, USP18 deficiency represents the first genetic disorder of PTS caused by dysregulation of the response to type I IFNs. Therapeutically, this places USP18 as a promising target not only for genetic but also acquired IFN-mediated CNS disorders.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso , Encéfalo/inmunología , Calcinosis , Endopeptidasas/deficiencia , Inmunidad Innata , Interferón Tipo I/inmunología , Microglía/inmunología , Malformaciones del Sistema Nervioso , Transducción de Señal , Enfermedades Autoinmunes del Sistema Nervioso/genética , Enfermedades Autoinmunes del Sistema Nervioso/inmunología , Enfermedades Autoinmunes del Sistema Nervioso/patología , Encéfalo/patología , Calcinosis/genética , Calcinosis/inmunología , Calcinosis/patología , Endopeptidasas/inmunología , Femenino , Humanos , Interferón Tipo I/genética , Masculino , Microglía/patología , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/inmunología , Malformaciones del Sistema Nervioso/patología , Transducción de Señal/genética , Transducción de Señal/inmunología , Ubiquitina Tiolesterasa
17.
Nat Commun ; 7: 11496, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27193971

RESUMEN

ISG15 is an interferon (IFN)-α/ß-induced ubiquitin-like protein. It exists as a free molecule, intracellularly and extracellularly, and conjugated to target proteins. Studies in mice have demonstrated a role for Isg15 in antiviral immunity. By contrast, human ISG15 was shown to have critical immune functions, but not in antiviral immunity. Namely, free extracellular ISG15 is crucial in IFN-γ-dependent antimycobacterial immunity, while free intracellular ISG15 is crucial for USP18-mediated downregulation of IFN-α/ß signalling. Here we describe ISG15-deficient patients who display no enhanced susceptibility to viruses in vivo, in stark contrast to Isg15-deficient mice. Furthermore, fibroblasts derived from ISG15-deficient patients display enhanced antiviral protection, and expression of ISG15 attenuates viral resistance to WT control levels. The species-specific gain-of-function in antiviral immunity observed in ISG15 deficiency is explained by the requirement of ISG15 to sustain USP18 levels in humans, a mechanism not operating in mice.


Asunto(s)
Citocinas/metabolismo , Ubiquitinas/metabolismo , Virosis/inmunología , Animales , Línea Celular , Citocinas/genética , Citocinas/inmunología , Femenino , Regulación de la Expresión Génica , Humanos , Interferones/metabolismo , Ratones , Cultivo Primario de Células , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinas/genética , Ubiquitinas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...