RESUMEN
Alterations in Dp71 expression, the most ubiquitous dystrophin isoform, have been associated with patient survival across tumours. Intriguingly, in certain malignancies, Dp71 acts as a tumour suppressor, while manifesting oncogenic properties in others. This diversity could be explained by the expression of two Dp71 splice variants encoding proteins with distinct C-termini, each with specific properties. Expression of these variants has impeded the exploration of their unique roles. Using CRISPR/Cas9, we ablated the Dp71f variant with the alternative C-terminus in a sarcoma cell line not expressing the canonical C-terminal variant, and conducted molecular (RNAseq) and functional characterisation of the knockout cells. Dp71f ablation induced major transcriptomic alterations, particularly affecting the expression of genes involved in calcium signalling and ECM-receptor interaction pathways. The genome-scale metabolic analysis identified significant downregulation of glucose transport via membrane vesicle reaction (GLCter) and downregulated glycolysis/gluconeogenesis pathway. Functionally, these molecular changes corresponded with, increased calcium responses, cell adhesion, proliferation, survival under serum starvation and chemotherapeutic resistance. Knockout cells showed reduced GLUT1 protein expression, survival without attachment and their migration and invasion in vitro and in vivo were unaltered, despite increased matrix metalloproteinases release. Our findings emphasise the importance of alternative splicing of dystrophin transcripts and underscore the role of the Dp71f variant, which appears to govern distinct cellular processes frequently dysregulated in tumour cells. The loss of this regulatory mechanism promotes sarcoma cell survival and treatment resistance. Thus, Dp71f is a target for future investigations exploring the intricate functions of specific DMD transcripts in physiology and across malignancies.
RESUMEN
Schizophrenia is a significant worldwide health concern, affecting over 20 million individuals and contributing to a potential reduction in life expectancy by up to 14.5 years. Despite its profound impact, the precise pathological mechanisms underlying schizophrenia continue to remain enigmatic, with previous research yielding diverse and occasionally conflicting findings. Nonetheless, one consistently observed phenomenon in brain imaging studies of schizophrenia patients is the disruption of white matter, the bundles of myelinated axons that provide connectivity and rapid signalling between brain regions. Myelin is produced by specialised glial cells known as oligodendrocytes, which have been shown to be disrupted in post-mortem analyses of schizophrenia patients. Oligodendrocytes are generated throughout life by a major population of oligodendrocyte progenitor cells (OPC), which are essential for white matter health and plasticity. Notably, a decline in a specific subpopulation of OPC has been identified as a principal factor in oligodendrocyte disruption and white matter loss in the aging brain, suggesting this may also be a factor in schizophrenia. In this review, we analysed genomic databases to pinpoint intersections between aging and schizophrenia and identify shared mechanisms of white matter disruption and cognitive dysfunction.
Asunto(s)
Envejecimiento , Oligodendroglía , Esquizofrenia , Humanos , Esquizofrenia/metabolismo , Esquizofrenia/patología , Esquizofrenia/genética , Oligodendroglía/metabolismo , Oligodendroglía/patología , Envejecimiento/metabolismo , Animales , Genómica/métodos , Sustancia Blanca/metabolismo , Sustancia Blanca/patología , Vaina de Mielina/metabolismo , Encéfalo/metabolismo , Encéfalo/patologíaRESUMEN
Oligodendrocytes (OLs) are specialized glial cells that myelinate CNS axons. OLs are generated throughout life from oligodendrocyte progenitor cells (OPCs) via a series of tightly controlled differentiation steps. Life-long myelination is essential for learning and to replace myelin lost in age-related pathologies such as Alzheimer's disease (AD) as well as white matter pathologies such as multiple sclerosis (MS). Notably, there is considerable myelin loss in the aging brain, which is accelerated in AD and underpins the failure of remyelination in secondary progressive MS. An important factor in age-related myelin loss is a marked decrease in the regenerative capacity of OPCs. In this review, we will contextualize recent advances in the key role of Epidermal Growth Factor (EGF) signaling in regulating multiple biological pathways in oligodendroglia that are dysregulated in aging.
RESUMEN
Agathisflavone is a flavonoid with anti-neuroinflammatory and myelinogenic properties, being also capable to induce neurogenesis. This study evaluated the therapeutic effects of agathisflavone-both as a pharmacological therapy administered in vivo and as an in vitro pre-treatment aiming to enhance rat mesenchymal stem cells (r)MSCs properties-in a rat model of acute spinal cord injury (SCI). Adult male Wistar rats (n = 6/group) underwent acute SCI with an F-2 Fogarty catheter and after 4 h were treated daily with agathisflavone (10 mg/kg ip, for 7 days), or administered with a single i.v. dose of 1 × 106 rMSCs either unstimulated cells (control) or pretreated with agathisflavone (1 µM, every 2 days, for 21 days in vitro). Control rats (n = 6/group) were treated with a single dose methylprednisolone (MP, 60 mg/kg ip). BBB scale was used to evaluate the motor functions of the animals; after 7 days of treatment, the SCI area was analyzed after H&E staining, and RT-qPCR was performed to analyze the expression of neurotrophins and arginase. Treatment with agathisflavone alone or with of 21-day agathisflavone-treated rMSCs was able to protect the injured spinal cord tissue, being associated with increased expression of NGF, GDNF and arginase, and reduced macrophage infiltrate. In addition, treatment of animals with agathisflavone alone was able to protect injured spinal cord tissue and to increase expression of neurotrophins, modulating the inflammatory response. These results support a pro-regenerative effect of agathisflavone that holds developmental potential for clinical applications in the future.
RESUMEN
Bipolar disorder (BD) is a complex group of neuropsychiatric disorders, typically comprising both manic and depressive episodes. The underlying neuropathology of BD is not established, but a consistent feature is progressive thinning of cortical grey matter (GM) and white matter (WM) in specific pathways, due to loss of subpopulations of neurons and astrocytes, with accompanying disturbance of connectivity. Dysregulation of astrocyte homeostatic functions are implicated in BD, notably regulation of glutamate, calcium signalling, circadian rhythms and metabolism. Furthermore, the beneficial therapeutic effects of the frontline treatments for BD are due at least in part to their positive actions on astrocytes, notably lithium, valproic acid (VPA) and carbamazepine (CBZ), as well as antidepressants and antipsychotics that are used in the management of this disorder. Treatments for BD are ineffective in a large proportion of cases, and astrocytes represent new therapeutic targets that can also serve as biomarkers of illness progression and treatment responsiveness in BD.
Asunto(s)
Antipsicóticos , Trastorno Bipolar , Antidepresivos/uso terapéutico , Antipsicóticos/uso terapéutico , Astrocitos , Trastorno Bipolar/tratamiento farmacológico , Ritmo Circadiano , HumanosRESUMEN
Oligodendrocyte progenitor cells (OPCs) are responsible for generating oligodendrocytes, the myelinating cells of the CNS. Life-long myelination is promoted by neuronal activity and is essential for neural network plasticity and learning. OPCs are known to contact synapses and it is proposed that neuronal synaptic activity in turn regulates their behavior. To examine this in the adult, we performed unilateral injection of the synaptic blocker botulinum neurotoxin A (BoNT/A) into the hippocampus of adult mice. We confirm BoNT/A cleaves SNAP-25 in the CA1 are of the hippocampus, which has been proven to block neurotransmission. Notably, BoNT/A significantly decreased OPC density and caused their shrinkage, as determined by immunolabeling for the OPC marker NG2. Furthermore, BoNT/A resulted in an overall decrease in the number of OPC processes, as well as a decrease in their lengths and branching frequency. These data indicate that synaptic activity is important for maintaining adult OPC numbers and cellular integrity, which is relevant to pathophysiological scenarios characterized by dysregulation of synaptic activity, such as age-related cognitive decline, Multiple Sclerosis and Alzheimer's disease.
Asunto(s)
Toxinas Botulínicas Tipo A/administración & dosificación , Hipocampo/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Células Precursoras de Oligodendrocitos/efectos de los fármacos , Sinapsis/efectos de los fármacos , Animales , Recuento de Células/métodos , Hipocampo/citología , Hipocampo/patología , Inyecciones Intraventriculares , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/fisiología , Células Precursoras de Oligodendrocitos/patología , Oligodendroglía/efectos de los fármacos , Oligodendroglía/patología , Sinapsis/patología , Sinapsis/fisiologíaRESUMEN
Brain ageing is characterised by a decline in neuronal function and associated cognitive deficits. There is increasing evidence that myelin disruption is an important factor that contributes to the age-related loss of brain plasticity and repair responses. In the brain, myelin is produced by oligodendrocytes, which are generated throughout life by oligodendrocyte progenitor cells (OPCs). Currently, a leading hypothesis points to ageing as a major reason for the ultimate breakdown of remyelination in Multiple Sclerosis (MS). However, an incomplete understanding of the cellular and molecular processes underlying brain ageing hinders the development of regenerative strategies. Here, our combined systems biology and neurobiological approach demonstrate that oligodendroglial and myelin genes are amongst the most altered in the ageing mouse cerebrum. This was underscored by the identification of causal links between signalling pathways and their downstream transcriptional networks that define oligodendroglial disruption in ageing. The results highlighted that the G-protein coupled receptor Gpr17 is central to the disruption of OPCs in ageing and this was confirmed by genetic fate-mapping and cellular analyses. Finally, we used systems biology strategies to identify therapeutic agents that rejuvenate OPCs and restore myelination in age-related neuropathological contexts.
Asunto(s)
Envejecimiento/genética , Envejecimiento/metabolismo , Cerebro/metabolismo , Genómica/métodos , Vaina de Mielina/metabolismo , Proteínas del Tejido Nervioso/genética , Células Precursoras de Oligodendrocitos/metabolismo , Receptores Acoplados a Proteínas G/genética , Transducción de Señal/genética , Animales , Diferenciación Celular/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , RNA-Seq/métodos , Receptores Acoplados a Proteínas G/metabolismo , Transcriptoma/genéticaRESUMEN
White matter (WM) is a highly prominent feature in the human cerebrum and is comprised of bundles of myelinated axons that form the connectome of the brain. Myelin is formed by oligodendrocytes and is essential for rapid neuronal electrical communication that underlies the massive computing power of the human brain. Oligodendrocytes are generated throughout life by oligodendrocyte precursor cells (OPCs), which are identified by expression of the chondroitin sulphate proteoglycan NG2 (Cspg4), and are often termed NG2-glia. Adult NG2+ OPCs are slowly proliferating cells that have the stem cell-like property of self-renewal and differentiation into a pool of 'late OPCs' or 'differentiation committed' OPCs(COPs) identified by specific expression of the G-protein-coupled receptor GPR17, which are capable of differentiation into myelinating oligodendrocytes. In the adult brain, these reservoirs of OPCs and COPs ensure rapid myelination of new neuronal connections formed in response to neuronal signalling, which underpins learning and cognitive function. However, there is an age-related decline in myelination that is associated with a loss of neuronal function and cognitive decline. The underlying causes of myelin loss in ageing are manifold, but a key factor is the decay in OPC 'stemness' and a decline in their replenishment of COPs, which results in the ultimate failure of myelin regeneration. These changes in ageing OPCs are underpinned by dysregulation of neuronal signalling and OPC metabolic function. Here, we highlight the role of purine signalling in regulating OPC self-renewal and the potential importance of GPR17 and the P2X7 receptor subtype in age-related changes in OPC metabolism. Moreover, age is the main factor in the failure of myelination in chronic multiple sclerosis and myelin loss in Alzheimer's disease, hence understanding the importance of purine signalling in OPC regeneration and myelination is critical for developing new strategies for promoting repair in age-dependent neuropathology.
Asunto(s)
Envejecimiento/metabolismo , Encéfalo/metabolismo , Oligodendroglía/metabolismo , Purinas/metabolismo , Animales , Axones/metabolismo , Axones/fisiología , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Encéfalo/fisiología , Humanos , Oligodendroglía/fisiología , Transducción de SeñalRESUMEN
Reactive astrocytes are astrocytes undergoing morphological, molecular, and functional remodeling in response to injury, disease, or infection of the CNS. Although this remodeling was first described over a century ago, uncertainties and controversies remain regarding the contribution of reactive astrocytes to CNS diseases, repair, and aging. It is also unclear whether fixed categories of reactive astrocytes exist and, if so, how to identify them. We point out the shortcomings of binary divisions of reactive astrocytes into good-vs-bad, neurotoxic-vs-neuroprotective or A1-vs-A2. We advocate, instead, that research on reactive astrocytes include assessment of multiple molecular and functional parameters-preferably in vivo-plus multivariate statistics and determination of impact on pathological hallmarks in relevant models. These guidelines may spur the discovery of astrocyte-based biomarkers as well as astrocyte-targeting therapies that abrogate detrimental actions of reactive astrocytes, potentiate their neuro- and glioprotective actions, and restore or augment their homeostatic, modulatory, and defensive functions.
Asunto(s)
Envejecimiento/patología , Astrocitos/patología , Encéfalo/patología , Médula Espinal/patología , Animales , Encefalopatías/patología , Lesiones Encefálicas/patología , Humanos , Traumatismos de la Médula Espinal/patologíaRESUMEN
Myelin disruption is a feature of natural aging and Alzheimer's disease (AD). In the CNS, myelin is produced by oligodendrocytes, which are generated throughout life by oligodendrocyte progenitor cells (OPCs). Here, we examined age-related changes in OPCs in APP/PS1 mice, a model for AD-like pathology, compared with non-transgenic (Tg) age-matched controls. The analysis was performed in the CA1 area of the hippocampus following immunolabeling for NG2 with the nuclear dye Hoescht, to identify OPC and OPC sister cells, a measure of OPC replication. The results indicate a significant decrease in the number of OPCs at 9 months in APP/PS1 mice, compared to age-matched controls, without further decline at 14 months. Also, the number of OPC sister cells declined significantly at 14 months in APP/PS1 mice, which was not observed in age-matched controls. Notably, OPCs also displayed marked morphological changes at 14 months in APP/PS1 mice, characterized by an overall shrinkage of OPC process domains and increased process branching. The results indicate that OPC disruption is a pathological sign in the APP/PS1 mouse model of AD.
RESUMEN
There is increasing evidence that myelin disruption is related to cognitive decline in Alzheimer's disease (AD). In the CNS, myelin is produced by oligodendrocytes, which are generated throughout life by adult oligodendrocyte progenitor cells (OPCs), also known as NG2-glia. To address whether alterations in myelination are related to age-dependent changes in OPCs, we analyzed NG2 and myelin basic protein (MBP) immunolabelling in the hippocampus of 3×Tg-AD mice at 6 and 24 months of age, compared with non-Tg age-matched controls. There was an age-related decrease in MBP immunostaining and OPC density, together with a decline in the number of OPC sister cells, a measure of OPC replication. Notably, the loss of myelin and OPC sister cells occurred earlier at 6 months in 3xTg-AD, suggesting accelerated aging, although there was not a concomitant decline in OPC numbers at this age, suggesting the observed changes in myelin were not a consequence of replicative exhaustion, but possibly of OPC disruption or senescence. In line with this, a key finding is that compared to age-match controls, OPC displayed marked morphological atrophy at 6 months in 3xTg-AD followed by morphological hypertrophy at 24 months, as deduced from significant changes in total cell surface area, total cell volume, somata volume and branching of main processes. Moreover, we show that hypertrophic OPCs surround and infiltrate amyloid-ß (Aß) plaques, a key pathological hallmark of AD. The results indicate that OPCs undergo complex age-related remodeling in the hippocampus of the 3xTg-AD mouse model. We conclude that OPC disruption is an early pathological sign in AD and is a potential factor in accelerated myelin loss and cognitive decline.
Asunto(s)
Enfermedad de Alzheimer/patología , Oligodendroglía/patología , Células Madre/patología , Envejecimiento/patología , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Atrofia , Modelos Animales de Enfermedad , Femenino , Hipocampo/patología , Hipertrofia , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Vaina de Mielina/metabolismo , Vaina de Mielina/patologíaRESUMEN
Inward rectifying potassium channels (Kir) are a large family of ion channels that play key roles in ion homeostasis in oligodendrocytes, the myelinating cells of the central nervous system (CNS). Prominent expression of Kir4.1 has been indicated in oligodendrocytes, but the extent of expression of other Kir subtypes is unclear. Here, we used qRT-PCR to determine expression of Kir channel transcripts in the mouse optic nerve, a white matter tract comprising myelinated axons and the glia that support them. A novel finding was the high relative expression of Kir7.1, comparable to that of Kir4.1, the main glial Kir channel. Significantly, Kir7.1 immunofluorescence labelling in optic nerve sections and in isolated cells was localised to oligodendrocyte somata. Kir7.1 are known as a K+ transporting channels and, using patch clamp electrophysiology and the Kir7.1 blocker VU590, we demonstrated Kir7.1 channels carry a significant proportion of the whole cell potassium conductance in oligodendrocytes isolated from mouse optic nerves. Notably, oligodendrocytes are highly susceptible to ischemia/hypoxia and this is due at least in part to disruption of ion homeostasis. A key finding of this study is that blockade of Kir7.1 with VU590 compromised oligodendrocyte cell integrity and compounds oligodendroglial loss in ischemia/hypoxia in the oxygen-glucose deprivation (OGD) model in isolated intact optic nerves. These data reveal Kir7.1 channels are molecularly and functionally expressed in oligodendrocytes and play an important role in determining oligodendrocyte survival and myelin integrity.
Asunto(s)
Oligodendroglía/fisiología , Nervio Óptico/fisiología , Canales de Potasio de Rectificación Interna/fisiología , Animales , Potenciales de la Membrana , Ratones Endogámicos C57BL , Ratones Transgénicos , Oligodendroglía/metabolismo , Nervio Óptico/metabolismo , Canales de Potasio de Rectificación Interna/análisis , Reacción en Cadena en Tiempo Real de la Polimerasa , Sustancia Blanca/metabolismoRESUMEN
Oligodendrocytes are the myelinating cells of the CNS, producing the insulating myelin sheath that facilitates rapid electrical conduction of axonal action potentials. Oligodendrocytes arise from oligodendrocyte progenitor cells (OPCs) under the control of multiple factors, including neurotransmitters and other neuron-derived factors. A significant population of OPCs persists in the adult CNS, where they are often referred to as NG2-glia, because they are identified by their expression of the NG2 chondroitin sulphate proteoglycan (CSPG4). In the adult brain, the primary function of NG2-glia is the life-long generation of oligodendrocytes to replace myelin lost through natural 'wear and tear' and pathology, as well as to provide new oligodendrocytes to myelinate new connections formed in response to new life experiences. NG2-glia contact synapses and respond to neurotransmitters and potassium released during neuronal transmission; to this end, NG2-glia (OPCs) express multiple neurotransmitter receptors and ion channels, with prominent roles being identified for glutamatergic signalling and potassium channels in oligodendrocyte differentiation. Myelinating oligodendrocytes also express a wide range of neurotransmitter receptors and ion channels, together with transporters and gap junctions; together, these have critical functions in cellular ion and water homeostasis, as well as metabolism, which is essential for maintaining myelin and axon integrity. An overriding theme is that oligodendrocyte function and myelination is not only essential for rapid axonal conduction, but is essential for learning and the long-term integrity of axons and neurones. Hence, myelination underpins cognitive function and the massive computing power of the human brain and myelin loss has devastating effects on CNS function. This chapter focuses on normal oligodendrocyte physiology.
Asunto(s)
Vaina de Mielina , Oligodendroglía/fisiología , Axones , Humanos , Células-Madre Neurales/citología , NeuronasRESUMEN
Oligodendrocytes form the myelin that ensheaths CNS axons, which is essential for rapid neuronal signalling and underpins the massive computing power of the human brain. Oligodendrocytes and myelin also provide metabolic and trophic support for axons and their disruption results in axonal demise and neurodegeneration, which are key features of Alzheimer's disease (AD). Notably, the brain has a remarkable capacity for regenerating oligodendrocytes, which is the function of adult oligodendrocyte progenitor cells (OPCs) or NG2-glia. White matter loss is often among the earliest brain changes in AD, preceding the tangles and plaques that characterize neuronal deficits. The underlying causes of myelin loss include oxidative stress, neuroinflammation and excitotoxicity, associated with accumulation of Aß and tau hyperphosphorylation, pathological hallmarks of AD. Moreover, there is evidence that NG2-glia are disrupted in AD, which may be associated with disruption of synaptic signalling. This has led to the hypothesis that a vicious cycle of myelin loss and failure of regeneration from NG2-glia plays a key role in AD. Therapies that target NG2-glia are likely to have positive effects on myelination and neuroprotection in AD.
Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Vaina de Mielina/patología , Oligodendroglía/citología , Axones , Enfermedades Desmielinizantes/fisiopatología , HumanosRESUMEN
Astrocytes are multifunctional glial cells that play essential roles in supporting synaptic signalling and white matter-associated connectivity. There is increasing evidence that astrocyte dysfunction is involved in several brain disorders, including bipolar disorder (BD), depression and schizophrenia. The mood stabiliser lithium is a frontline treatment for BD, but the mechanisms of action remain unclear. Here, we demonstrate that astrocytes are direct targets of lithium and identify unique astroglial transcriptional networks that regulate specific molecular changes in astrocytes associated with BD and schizophrenia, together with Alzheimer's disease (AD). Using pharmacogenomic analyses, we identified novel roles for the extracellular matrix (ECM) regulatory enzyme lysyl oxidase (LOX) and peroxisome proliferator-activated receptor gamma (PPAR-γ) as profound regulators of astrocyte morphogenesis. This study unravels new pathophysiological mechanisms in astrocytes that have potential as novel biomarkers and potential therapeutic targets for regulating astroglial responses in diverse neurological disorders.
Asunto(s)
Astrocitos/efectos de los fármacos , Litio/farmacología , PPAR gamma/metabolismo , Proteína-Lisina 6-Oxidasa/metabolismo , Animales , Astrocitos/metabolismo , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Ratones , Ratones Transgénicos , Nervio Óptico/efectos de los fármacos , Nervio Óptico/metabolismoRESUMEN
Inward Rectifying Potassium channels (Kir) are a large family of ion channels that play key roles in ion homeostasis and neuronal excitability. The most recently described Kir subtype is Kir7.1, which is known as a K+ transporting subtype. Earlier studies localised Kir7.1 to subpopulations of neurones in the brain. However, the pattern of Kir7.1 expression across the brain has not previously been examined. Here, we have determined neuronal and glial expression of Kir7.1 in the adult mouse brain, using immunohistochemistry and transgenic mouse lines expressing reporters specific for astrocytes [glial fibrillary acidic protein-enhanced green fluorescent protein (GFAP-EGFP], myelinating oligodendrocytes (PLP-DsRed), oligodendrocyte progenitor cells (OPC, Pdgfra-creERT2 /Rosa26-YFP double-transgenic mice) and all oligodendrocyte lineage cells (SOX10-EGFP). The results demonstrate significant neuronal Kir7.1 immunostaining in the cortex, hippocampus, cerebellum and pons, as well as the striatum and hypothalamus. In addition, astrocytes are shown to be immunopositive for Kir7.1 throughout grey and white matter, with dense immunostaining on cell somata, primary processes and perivascular end-feet. Immunostaining for Kir7.1 was observed in oligodendrocytes, myelin and OPCs throughout the brain, although immunostaining was heterogeneous. Neuronal and glial expression of Kir7.1 is confirmed using neurone-glial cortical cultures and optic nerve glial cultures. Notably, Kir7.1 have been shown to regulate the excitability of thalamic neurones and our results indicate this may be a widespread function of Kir7.1 in neurones throughout the brain. Moreover, based on the function of Kir7.1 in multiple transporting epithelia, Kir7.1 are likely to play an equivalent role in the primary glial function of K+ homeostasis. Our results indicate Kir7.1 are far more pervasive in the brain than previously recognised and have potential importance in regulating neuronal and glial function.
Asunto(s)
Encéfalo/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Sustancia Blanca/metabolismo , Animales , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Inmunohistoquímica , Ratones , Ratones TransgénicosRESUMEN
Studies by Bruce Ransom and colleagues have made a major contribution to show that white matter is susceptible to ischemia/hypoxia. White matter contains axons and the glia that support them, notably myelinating oligodendrocytes, which are highly vulnerable to ischemic-hypoxic damage. Previous studies have shown that metabotropic GluRs (mGluRs) are cytoprotective for oligodendrocyte precursor cells and immature oligodendrocytes, but their potential role in adult white matter was unresolved. Here, we report that group 1 mGluR1/5 and group 2 mGluR3 subunits are expressed in optic nerves from mice aged postnatal day (P)8-12 and P30-35. We demonstrate that activation of group 1 mGluR protects oligodendrocytes against oxygen-glucose deprivation (OGD) in developing and young adult optic nerves. In contrast, group 2 mGluR are shown to be protective for oligodendrocytes against OGD in postnatal but not young adult optic nerves. The cytoprotective effect of group 1 mGluR requires activation of PKC, whilst group 2 mGluR are dependent on negatively regulating adenylyl cyclase and cAMP. Our results identify a role for mGluR in limiting injury of oligodendrocytes in developing and young adult white matter, which may be useful for protecting oligodendrocytes in neuropathologies involving excitoxicity and ischemia/hypoxia.
Asunto(s)
Isquemia/metabolismo , Isquemia/prevención & control , Oligodendroglía/metabolismo , Nervio Óptico/metabolismo , Receptores de Glutamato Metabotrópico/biosíntesis , Animales , Animales Recién Nacidos , AMP Cíclico/metabolismo , Glucosa/farmacología , Isquemia/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Oligodendroglía/efectos de los fármacos , Oligodendroglía/patología , Nervio Óptico/efectos de los fármacos , Nervio Óptico/patología , Técnicas de Cultivo de ÓrganosRESUMEN
Strategies for promoting neural regeneration are hindered by the difficulty of manipulating desired neural fates in the brain without complex genetic methods. The subventricular zone (SVZ) is the largest germinal zone of the forebrain and is responsible for the lifelong generation of interneuron subtypes and oligodendrocytes. Here, we have performed a bioinformatics analysis of the transcriptome of dorsal and lateral SVZ in early postnatal mice, including neural stem cells (NSCs) and their immediate progenies, which generate distinct neural lineages. We identified multiple signaling pathways that trigger distinct downstream transcriptional networks to regulate the diversity of neural cells originating from the SVZ. Next, we used a novel in silico genomic analysis, searchable platform-independent expression database/connectivity map (SPIED/CMAP), to generate a catalogue of small molecules that can be used to manipulate SVZ microdomain-specific lineages. Finally, we demonstrate that compounds identified in this analysis promote the generation of specific cell lineages from NSCs in vivo, during postnatal life and adulthood, as well as in regenerative contexts. This study unravels new strategies for using small bioactive molecules to direct germinal activity in the SVZ, which has therapeutic potential in neurodegenerative diseases.