Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Chem Neurosci ; 15(3): 456-461, 2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-38251903

RESUMEN

The recent development of genetically encoded fluorescent neurotransmitter biosensors has opened the door to recording serotonin (5-hydroxytryptamine, 5-HT) signaling dynamics with high temporal and spatial resolution in vivo. While this represents a significant step forward for serotonin research, the utility of available 5-HT biosensors remains to be fully established under diverse in vivo conditions. Here, we used two-photon microscopy in awake mice to examine the effectiveness of specific 5-HT biosensors for monitoring 5-HT dynamics in somatosensory cortex. Initial experiments found that whisker stimulation evoked a striking change in 5-HT biosensor signal. However, similar changes were observed in controls expressing green fluorescent protein, suggesting a potential hemodynamic artifact. Subsequent use of a second control fluorophore with emission peaks separated from the 5-HT biosensor revealed a reproducible, stimulus-locked increase in 5-HT signal. Our data highlight the promise of 5-HT biosensors for in vivo application, provided measurements are carried out with appropriate optical controls.


Asunto(s)
Neocórtex , Serotonina , Ratones , Animales , Serotonina/metabolismo , Microscopía , Neocórtex/metabolismo , Transducción de Señal , Neurotransmisores/metabolismo , Mamíferos/metabolismo
2.
Cereb Cortex ; 33(7): 3944-3959, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36104852

RESUMEN

The claustrum is known for its extensive connectivity with many other forebrain regions, but its elongated shape and deep location have made further study difficult. We have sought to understand when mouse claustrum neurons are born, where they are located in developing brains, and when they develop their widespread connections to the cortex. We established that a well-characterized parvalbumin plexus, which identifies the claustrum in adults, is only present from postnatal day (P) 21. A myeloarchitectonic outline of the claustrum can be derived from a triangular fiber arrangement from P15. A dense patch of Nurr1+ cells is present at its core and is already evident at birth. Bromodeoxyuridine birth dating of forebrain progenitors reveals that the majority of claustrum neurons are born during a narrow time window centered on embryonic day 12.5, which is later than the adjacent subplate and endopiriform nucleus. Retrograde tracing revealed that claustrum projections to anterior cingulate (ACA) and retrosplenial cortex (RSP) follow distinct developmental trajectories. Claustrum-ACA connectivity matures rapidly and reaches adult-like innervation density by P10, whereas claustrum-RSP innervation emerges later over a protracted time window. This work establishes the timeline of claustrum development and provides a framework for understanding how the claustrum is built and develops its unique connectivity.


Asunto(s)
Claustro , Ratones , Animales , Ganglios Basales/fisiología , Vías Nerviosas/fisiología , Giro del Cíngulo , Neuronas
3.
Cereb Cortex ; 32(12): 2538-2554, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34613375

RESUMEN

Mammalian neocortex is important for conscious processing of sensory information with balanced glutamatergic and GABAergic signaling fundamental to this function. Yet little is known about how this interaction arises despite increasing insight into early GABAergic interneuron (IN) circuits. To study this, we assessed the contribution of specific INs to the development of sensory processing in the mouse whisker barrel cortex, specifically the role of INs in early speed coding and sensory adaptation. In wild-type animals, both speed processing and adaptation were present as early as the layer 4 critical period of plasticity and showed refinement over the period leading to active whisking onset. To test the contribution of IN subtypes, we conditionally silenced action-potential-dependent GABA release in either somatostatin (SST) or vasoactive intestinal peptide (VIP) INs. These genetic manipulations influenced both spontaneous and sensory-evoked cortical activity in an age- and layer-dependent manner. Silencing SST + INs reduced early spontaneous activity and abolished facilitation in sensory adaptation observed in control pups. In contrast, VIP + IN silencing had an effect towards the onset of active whisking. Silencing either IN subtype had no effect on speed coding. Our results show that these IN subtypes contribute to early sensory processing over the first few postnatal weeks.


Asunto(s)
Corteza Somatosensorial , Vibrisas , Animales , Interneuronas/fisiología , Mamíferos/metabolismo , Ratones , Percepción , Corteza Somatosensorial/fisiología , Péptido Intestinal Vasoactivo/metabolismo , Vibrisas/fisiología
4.
J Neurosci ; 41(5): 813-822, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33431633

RESUMEN

The sensory and cognitive abilities of the mammalian neocortex are underpinned by intricate columnar and laminar circuits formed from an array of diverse neuronal populations. One approach to determining how interactions between these circuit components give rise to complex behavior is to investigate the rules by which cortical circuits are formed and acquire functionality during development. This review summarizes recent research on the development of the neocortex, from genetic determination in neural stem cells through to the dynamic role that specific neuronal populations play in the earliest circuits of neocortex, and how they contribute to emergent function and cognition. While many of these endeavors take advantage of model systems, consideration will also be given to advances in our understanding of activity in nascent human circuits. Such cross-species perspective is imperative when investigating the mechanisms underlying the dysfunction of early neocortical circuits in neurodevelopmental disorders, so that one can identify targets amenable to therapeutic intervention.


Asunto(s)
Neocórtex/citología , Neocórtex/crecimiento & desarrollo , Red Nerviosa/citología , Red Nerviosa/crecimiento & desarrollo , Células-Madre Neurales/fisiología , Neuronas/fisiología , Animales , Humanos , Lógica
5.
Neuron ; 105(1): 4-6, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31951527

RESUMEN

Fundamental research into early circuits of the neocortex provides insight into the etiology of mental illness. In this issue of Neuron, Chini et al. (2020) probe the consequences of combined genetic and environmental perturbation on emergent network activity in the prefrontal cortex, identifying a window for possible intervention.


Asunto(s)
Disfunción Cognitiva , Neocórtex , Animales , Ratones , Neuronas , Corteza Prefrontal
6.
J Physiol ; 596(2): 145-162, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29110301

RESUMEN

An important consideration when probing the function of any neuron is to uncover the source of synaptic input onto the cell, its intrinsic physiology and efferent targets. Over the years, electrophysiological approaches have generated considerable insight into these properties in a variety of cortical neuronal subtypes and circuits. However, as researchers explore neuronal function in greater detail, they are increasingly turning to optical techniques to bridge the gap between local network interactions and behaviour. The application of optical methods has increased dramatically over the past decade, spurred on by the optogenetic revolution. In this review, we provide an account of recent innovations, providing researchers with a primer detailing circuit mapping strategies in the cerebral cortex. We will focus on technical aspects of performing neurotransmitter uncaging and channelrhodopsin-assisted circuit mapping, with the aim of identifying common pitfalls that can negatively influence the collection of reliable data.


Asunto(s)
Mapeo Encefálico/métodos , Corteza Cerebral/fisiología , Neuronas/fisiología , Optogenética , Animales , Corteza Cerebral/citología , Humanos , Neuronas/citología , Transmisión Sináptica
7.
Brain Struct Funct ; 222(3): 1367-1384, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27510895

RESUMEN

Developmental dyslexia is a common disorder with a strong genetic component, but the underlying molecular mechanisms are still unknown. Several candidate dyslexia-susceptibility genes, including KIAA0319, DYX1C1, and DCDC2, have been identified in humans. RNA interference experiments targeting these genes in rat embryos have shown impairments in neuronal migration, suggesting that defects in radial cortical migration could be involved in the disease mechanism of dyslexia. Here we present the first characterisation of a Kiaa0319 knockout mouse line. Animals lacking KIAA0319 protein do not show anatomical abnormalities in any of the layered structures of the brain. Neurogenesis and radial migration of cortical projection neurons are not altered, and the intrinsic electrophysiological properties of Kiaa0319-deficient neurons do not differ from those of wild-type neurons. Kiaa0319 overexpression in cortex delays radial migration, but does not affect final neuronal position. However, knockout animals show subtle differences suggesting possible alterations in anxiety-related behaviour and in sensorimotor gating. Our results do not reveal a migration disorder in the mouse model, adding to the body of evidence available for Dcdc2 and Dyx1c1 that, unlike in the rat in utero knockdown models, the dyslexia-susceptibility candidate mouse homolog genes do not play an evident role in neuronal migration. However, KIAA0319 protein expression seems to be restricted to the brain, not only in early developmental stages but also in adult mice, indicative of a role of this protein in brain function. The constitutive and conditional knockout lines reported here will be useful tools for further functional analyses of Kiaa0319.


Asunto(s)
Movimiento Celular/genética , Dislexia/genética , Dislexia/patología , Neocórtex/patología , Proteínas del Tejido Nervioso/deficiencia , Neuronas/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Ansiedad/etiología , Ansiedad/genética , Encéfalo/metabolismo , Adaptación a la Oscuridad/genética , Modelos Animales de Enfermedad , Dislexia/complicaciones , Electroporación , Embrión de Mamíferos , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Genotipo , Técnicas In Vitro , Antígeno Ki-67/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Potenciales de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neocórtex/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/genética , Factor de Transcripción PAX6/metabolismo , Técnicas de Placa-Clamp , Embarazo , Inhibición Prepulso/genética , Interferencia de ARN , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Filtrado Sensorial/genética , Proteínas de Dominio T Box/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
8.
Neuron ; 89(3): 536-49, 2016 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-26844833

RESUMEN

GABAergic activity is thought to influence developing neocortical sensory circuits. Yet the late postnatal maturation of local layer (L)4 circuits suggests alternate sources of GABAergic control in nascent thalamocortical networks. We show that a population of L5b, somatostatin (SST)-positive interneuron receives early thalamic synaptic input and, using laser-scanning photostimulation, identify an early transient circuit between these cells and L4 spiny stellates (SSNs) that disappears by the end of the L4 critical period. Sensory perturbation disrupts the transition to a local GABAergic circuit, suggesting a link between translaminar and local control of SSNs. Conditional silencing of SST+ interneurons or conversely biasing the circuit toward local inhibition by overexpression of neuregulin-1 type 1 results in an absence of early L5b GABAergic input in mutants and delayed thalamic innervation of SSNs. These data identify a role for L5b SST+ interneurons in the control of SSNs in the early postnatal neocortex.


Asunto(s)
Interneuronas/fisiología , Corteza Somatosensorial/fisiología , Tálamo/citología , Tálamo/fisiología , Ácido gamma-Aminobutírico/fisiología , Animales , Estimulación Eléctrica , Femenino , Masculino , Potenciales de la Membrana/fisiología , Ratones , Ratones Transgénicos , Vías Nerviosas , Neurregulina-1/biosíntesis , Estimulación Luminosa , Corteza Somatosensorial/citología , Corteza Somatosensorial/crecimiento & desarrollo , Somatostatina/fisiología
9.
Nat Commun ; 7: 10584, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26843463

RESUMEN

GABAergic interneurons play key roles in cortical circuits, yet little is known about their early connectivity. Here we use glutamate uncaging and a novel optogenetic strategy to track changes in the afferent and efferent synaptic connections of developing neocortical interneuron subtypes. We find that Nkx2-1-derived interneurons possess functional synaptic connections before emerging pyramidal cell networks. Subsequent interneuron circuit maturation is both subtype and layer dependent. Glutamatergic input onto fast spiking (FS), but not somatostatin-positive, non-FS interneurons increases over development. Interneurons of both subtype located in layers (L) 4 and 5b engage in transient circuits that disappear after the somatosensory critical period. These include a pathway mediated by L5b somatostatin-positive interneurons that specifically targets L4 during the first postnatal week. The innervation patterns of immature cortical interneuron circuits are thus neither static nor progressively strengthened but follow a layer-specific choreography of transient connections that differ from those of the adult brain.


Asunto(s)
Neuronas GABAérgicas , Interneuronas , Neocórtex/crecimiento & desarrollo , Red Nerviosa/crecimiento & desarrollo , Sinapsis , Animales , Animales Recién Nacidos , Análisis por Conglomerados , Proteínas Fluorescentes Verdes , Inmunohistoquímica , Ratones , Proteínas Nucleares , Optogenética , Técnicas de Placa-Clamp , Análisis de Componente Principal , Células Piramidales , Factor Nuclear Tiroideo 1 , Factores de Transcripción
10.
Neuron ; 86(2): 501-13, 2015 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-25843402

RESUMEN

Transcriptional codes initiated during brain development are ultimately realized in adulthood as distinct cell types performing specialized roles in behavior. Focusing on the mouse external globus pallidus (GPe), we demonstrate that the potential contributions of two GABAergic GPe cell types to voluntary action are fated from early life to be distinct. Prototypic GPe neurons derive from the medial ganglionic eminence of the embryonic subpallium and express the transcription factor Nkx2-1. These neurons fire at high rates during alert rest, and encode movements through heterogeneous firing rate changes, with many neurons decreasing their activity. In contrast, arkypallidal GPe neurons originate from lateral/caudal ganglionic eminences, express the transcription factor FoxP2, fire at low rates during rest, and encode movements with robust increases in firing. We conclude that developmental diversity positions prototypic and arkypallidal neurons to fulfil distinct roles in behavior via their disparate regulation of GABA release onto different basal ganglia targets.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Globo Pálido/citología , Globo Pálido/crecimiento & desarrollo , Movimiento/fisiología , Neuronas/clasificación , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Potenciales de Acción/fisiología , Animales , Linaje de la Célula/fisiología , Encefalinas/metabolismo , Globo Pálido/embriología , Ratones , Precursores de Proteínas/metabolismo , Curva ROC , Factor Nuclear Tiroideo 1 , Ácido gamma-Aminobutírico/metabolismo
12.
J Neurosci ; 32(38): 13085-99, 2012 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-22993426

RESUMEN

The integration of neurons within the developing cerebral cortex is a prolonged process dependent on a combination of molecular and physiological cues. To examine the latter we used laser scanning photostimulation (LSPS) of caged glutamate in conjunction with whole-cell patch-clamp electrophysiology to probe the integration of pyramidal cells in the sensorimotor regions of the mouse neocortex. In the days immediately after postnatal day 5 (P5) the origin of the LSPS-evoked AMPA receptor (AMPAR)-mediated synaptic inputs were diffuse and poorly defined with considerable variability between cells. Over the subsequent week this coalesced and shifted, primarily influenced by an increased contribution from layers 2/3 cells, which became a prominent motif of the afferent input onto layer 5 pyramidal cells regardless of cortical region. To further investigate this particular emergent translaminar connection, we alternated our mapping protocol between two holding potentials (-70 and +40 mV) allowing us to detect exclusively NMDA receptor (NMDAR)-mediated inputs. This revealed distal MK-801-sensitive synaptic inputs that predict the formation of the mature, canonical layer 2/3 to 5 pathway. However, these were a transient feature and had been almost entirely converted to AMPAR synapses at a later age (P16). To examine the role of activity in the recruitment of early NMDAR synapses, we evoked brief periods (20 min) of rhythmic bursting. Short intense periods of activity could cause a prolonged augmentation of the total input onto pyramidal cells up until P12; a time point when the canonical circuit has been instated and synaptic integration shifts to a more consolidatory phase.


Asunto(s)
Corteza Motora/crecimiento & desarrollo , Neocórtex/citología , Neocórtex/crecimiento & desarrollo , Vías Nerviosas/crecimiento & desarrollo , Células Piramidales/fisiología , Sinapsis/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Bicuculina/farmacología , Biofisica , Mapeo Encefálico , Maleato de Dizocilpina/farmacología , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Antagonistas de Receptores de GABA-A/farmacología , Glutamatos/farmacología , Técnicas In Vitro , Rayos Láser , Magnesio/farmacología , Ratones , Neocórtex/metabolismo , Técnicas de Placa-Clamp , Estimulación Luminosa/instrumentación , Estimulación Luminosa/métodos , Células Piramidales/efectos de los fármacos , Estadísticas no Paramétricas , Sinapsis/efectos de los fármacos , Factores de Tiempo
13.
Eur J Neurosci ; 34(10): 1542-52, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22103412

RESUMEN

The locally projecting GABAergic interneurons of the mammalian cerebral cortex are a highly heterogeneous population, whose malfunction or deficit has been implicated in a wide range of neurological disorders. However, the low incidence of the various distinct interneuron populations within the neocortex, combined with the lack of molecular or physiological markers specific to these subtypes, have hampered investigations into their function in the normal and dysfunctional brain. A number of research groups have begun to elucidate the developmental genetic mechanism that underpins this diversity in the mouse neocortex, spurred on by the knowledge that the temporal and spatial origin of an interneuron in the embryonic brain is predictive of its eventual intrinsic properties in the mature cortex. In this review we highlight a number of recent findings that strengthen our understanding of the transcription factor code that is at the heart of generating this diversity. Further understanding of this code will enable selective observation, targeting and manipulation of interneuron subtypes across both in vitro and in vivo systems.


Asunto(s)
Interneuronas/fisiología , Neocórtex/citología , Ácido gamma-Aminobutírico/metabolismo , Animales , Mapeo Encefálico , Interneuronas/citología , Ratones , Médula Espinal/citología
14.
Dev Neurobiol ; 71(8): 710-32, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21485015

RESUMEN

Interneurons, which release the neurotransmitter γ-aminobutyric acid (GABA), are the major inhibitory cells of the central nervous system (CNS). Despite comprising only 20-30% of the cerebral cortical neuronal population, these cells play an essential and powerful role in modulating the electrical activity of the excitatory pyramidal cells onto which they synapse. Although interneurons are present in all regions of the mature telencephalon, during embryogenesis these cells are generated in specific compartments of the ventral (subpallial) telencephalon known as ganglionic eminences. To reach their final destinations in the mature brain, immature interneurons migrate from the ganglionic eminences to developing telencephalic structures that are both near and far from their site of origin. The specification and migration of these cells is a complex but precisely orchestrated process that is regulated by a combination of intrinsic and extrinsic signals. The final outcome of which is the wiring together of excitatory and inhibitory neurons that were born in separate regions of the developing telencephalon. Disruption of any aspect of this sequence of events during development, either from an environmental insult or due to genetic mutations, can have devastating consequences on normal brain function.


Asunto(s)
Interneuronas/fisiología , Neurogénesis/fisiología , Telencéfalo/crecimiento & desarrollo , Animales , Movimiento Celular/fisiología , Ácido gamma-Aminobutírico/fisiología
15.
J Neurosci ; 30(5): 1582-94, 2010 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-20130169

RESUMEN

By combining an inducible genetic fate mapping strategy with electrophysiological analysis, we have systematically characterized the populations of cortical GABAergic interneurons that originate from the caudal ganglionic eminence (CGE). Interestingly, compared with medial ganglionic eminence (MGE)-derived cortical interneuron populations, the initiation [embryonic day 12.5 (E12.5)] and peak production (E16.5) of interneurons from this embryonic structure occurs 3 d later in development. Moreover, unlike either pyramidal cells or MGE-derived cortical interneurons, CGE-derived interneurons do not integrate into the cortex in an inside-out manner but preferentially (75%) occupy superficial cortical layers independent of birthdate. In contrast to previous estimates, CGE-derived interneurons are both considerably greater in number (approximately 30% of all cortical interneurons) and diversity (comprised by at least nine distinct subtypes). Furthermore, we found that a large proportion of CGE-derived interneurons, including the neurogliaform subtype, express the glycoprotein Reelin. In fact, most CGE-derived cortical interneurons express either Reelin or vasoactive intestinal polypeptide. Thus, in conjunction with previous studies, we have now determined the spatial and temporal origins of the vast majority of cortical interneuron subtypes.


Asunto(s)
Linaje de la Célula/genética , Corteza Cerebral/citología , Técnicas Genéticas , Interneuronas/citología , Animales , Tipificación del Cuerpo/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Diferenciación Celular/genética , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiología , Proteínas de la Matriz Extracelular/metabolismo , Marcadores Genéticos , Interneuronas/metabolismo , Interneuronas/fisiología , Masculino , Ratones , Proteínas del Tejido Nervioso/metabolismo , Técnicas de Placa-Clamp , Prosencéfalo/citología , Prosencéfalo/fisiología , Proteína Reelina , Serina Endopeptidasas/metabolismo
16.
Neuron ; 59(5): 722-32, 2008 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-18786356

RESUMEN

Previous work has demonstrated that the character of mouse cortical interneuron subtypes can be directly related to their embryonic temporal and spatial origins. The relationship between embryonic origin and the character of mature interneurons is likely reflected by the developmental expression of genes that direct cell fate. However, a thorough understanding of the early genetic events that specify subtype identity has been hampered by the perinatal lethality resulting from the loss of genes implicated in the determination of cortical interneurons. Here, we employ a conditional loss-of-function approach to demonstrate that the transcription factor Nkx2-1 is required for the proper specification of specific interneuron subtypes. Removal of this gene at distinct neurogenic time points results in a switch in the subtypes of neurons observed at more mature ages. Our strategy reveals a causal link between the embryonic genetic specification by Nkx2-1 in progenitors and the functional attributes of their neuronal progeny in the mature nervous system.


Asunto(s)
Tipificación del Cuerpo/fisiología , Corteza Cerebral/citología , Regulación del Desarrollo de la Expresión Génica/fisiología , Interneuronas/clasificación , Interneuronas/fisiología , Proteínas Nucleares/fisiología , Factores de Transcripción/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Tipificación del Cuerpo/genética , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Electroencefalografía , Embrión de Mamíferos , Antagonistas de Estrógenos/farmacología , Femenino , Proteínas Fluorescentes Verdes/genética , Interneuronas/efectos de los fármacos , Masculino , Ratones , Ratones Transgénicos , Mutación/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Convulsiones/genética , Convulsiones/fisiopatología , Células Madre/efectos de los fármacos , Células Madre/fisiología , Tamoxifeno/farmacología , Factor Nuclear Tiroideo 1 , beta-Galactosidasa/genética
17.
Eur J Neurosci ; 26(11): 2989-3002, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18028107

RESUMEN

The ventral spinal cord consists of interneuron groups arising from distinct, genetically defined, progenitor domains along the dorsoventral axis. Many of these interneuron groups settle in the ventral spinal cord which, in mammals, contains the central pattern generator for locomotion. In order to better understand the locomotor networks, we have used different transgenic mice for anatomical characterization of one of these interneuron groups, called V2 interneurons. Neurons in this group are either V2a interneurons marked by the postmitotic expression of the transcription factor Chx10, or V2b interneurons which express the transcription factors Gata2 and Gata3. We found that all V2a and most V2b interneurons were ipsilaterally projecting in embryos as well as in newborns. V2a interneurons were for the most part glutamatergic while V2b interneurons were mainly GABAergic or glycinergic. Furthermore, we demonstrated that a large proportion of V2 interneurons expressed the axon guidance molecule EphA4, a molecule previously shown to be important for correct organization of locomotor networks. We also showed that V2 interneurons and motor neurons alone did not account for all EphA4-expressing neurons in the spinal cord. Together, these findings enable a better interpretation of neural networks underlying locomotion, and open up the search for as yet unknown components of the mammalian central pattern generator.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Interneuronas/fisiología , Fenotipo , Receptor EphA4/metabolismo , Médula Espinal , Animales , Animales Recién Nacidos , Axones/fisiología , Embrión de Mamíferos , Lateralidad Funcional , Glutamato Descarboxilasa/genética , Proteínas de Transporte de Glicina en la Membrana Plasmática/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Hibridación in Situ , Interneuronas/clasificación , Interneuronas/citología , Proteínas con Homeodominio LIM , Proteínas Luminiscentes/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas Motoras/metabolismo , Receptor EphA4/genética , Médula Espinal/citología , Médula Espinal/embriología , Médula Espinal/crecimiento & desarrollo , Factores de Transcripción/genética
19.
J Neurosci ; 27(29): 7786-98, 2007 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-17634372

RESUMEN

Inhibitory GABAergic interneurons of the mouse neocortex are a highly heterogeneous population of neurons that originate from the ventral telencephalon and migrate tangentially up into the developing cortical plate. The majority of cortical interneurons arise from a transient embryonic structure known as the medial ganglionic eminence (MGE), but how the remarkable diversity is specified in this region is not known. We have taken a genetic fate mapping strategy to elucidate the temporal origins of cortical interneuron subtypes within the MGE. We used an inducible form of Cre under the regulation of Olig2, a basic helix-loop-helix transcription factor highly expressed in neural progenitors of the MGE. We observe that the physiological subtypes of cortical interneurons are, to a large degree, unique to their time point of generation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Movimiento Celular/fisiología , Corteza Cerebral/citología , Corteza Cerebral/embriología , Interneuronas/fisiología , Proteínas del Tejido Nervioso/metabolismo , Células Madre/fisiología , Potenciales de Acción/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Tipificación del Cuerpo/fisiología , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Movimiento Celular/genética , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Fluorescentes Verdes/metabolismo , Técnicas In Vitro , Interneuronas/clasificación , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Factor de Transcripción 2 de los Oligodendrocitos , Técnicas de Placa-Clamp/métodos , Telencéfalo/citología
20.
Nature ; 440(7081): 215-9, 2006 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-16525473

RESUMEN

The neuronal networks that generate vertebrate movements such as walking and swimming are embedded in the spinal cord. These networks, which are referred to as central pattern generators (CPGs), are ideal systems for determining how ensembles of neurons generate simple behavioural outputs. In spite of efforts to address the organization of the locomotor CPG in walking animals, little is known about the identity and function of the spinal interneuron cell types that contribute to these locomotor networks. Here we use four complementary genetic approaches to directly address the function of mouse V1 neurons, a class of local circuit inhibitory interneurons that selectively express the transcription factor Engrailed1. Our results show that V1 neurons shape motor outputs during locomotion and are required for generating 'fast' motor bursting. These findings outline an important role for inhibition in regulating the frequency of the locomotor CPG rhythm, and also suggest that V1 neurons may have an evolutionarily conserved role in controlling the speed of vertebrate locomotor movements.


Asunto(s)
Locomoción/fisiología , Neuronas Motoras/fisiología , Médula Espinal/citología , Médula Espinal/fisiología , Potenciales de Acción , Animales , Proteínas del Ojo/genética , Eliminación de Gen , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Interneuronas/fisiología , Locomoción/genética , Ratones , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/deficiencia , Factores de Transcripción Paired Box/genética , Receptores de Neuropéptido/metabolismo , Proteínas Represoras/genética , Factores de Tiempo , Transgenes/genética , Caminata/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...