Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mov Disord ; 39(4): 684-693, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38380765

RESUMEN

BACKGROUND: The ventral intermediate nucleus of the thalamus (VIM) is an effective target for deep brain stimulation in tremor patients. Despite its therapeutic importance, its oscillatory coupling to cortical areas has rarely been investigated in humans. OBJECTIVES: The objective of this study was to identify the cortical areas coupled to the VIM in patients with essential tremor. METHODS: We combined resting-state magnetoencephalography with local field potential recordings from the VIM of 19 essential tremor patients. Whole-brain maps of VIM-cortex coherence in several frequency bands were constructed using beamforming and compared with corresponding maps of subthalamic nucleus (STN) coherence based on data from 19 patients with Parkinson's disease. In addition, we computed spectral Granger causality. RESULTS: The topographies of VIM-cortex and STN-cortex coherence were very similar overall but differed quantitatively. Both nuclei were coupled to the ipsilateral sensorimotor cortex in the high-beta band; to the sensorimotor cortex, brainstem, and cerebellum in the low-beta band; and to the temporal cortex, brainstem, and cerebellum in the alpha band. High-beta coherence to sensorimotor cortex was stronger for the STN (P = 0.014), whereas low-beta coherence to the brainstem was stronger for the VIM (P = 0.017). Although the STN was driven by cortical activity in the high-beta band, the VIM led the sensorimotor cortex in the alpha band. CONCLUSIONS: Thalamo-cortical coupling is spatially and spectrally organized. The overall similar topographies of VIM-cortex and STN-cortex coherence suggest that functional connections are not necessarily unique to one subcortical structure but might reflect larger frequency-specific networks involving VIM and STN to a different degree. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Estimulación Encefálica Profunda , Temblor Esencial , Magnetoencefalografía , Núcleo Subtalámico , Humanos , Masculino , Femenino , Persona de Mediana Edad , Magnetoencefalografía/métodos , Núcleo Subtalámico/fisiología , Núcleo Subtalámico/fisiopatología , Anciano , Estimulación Encefálica Profunda/métodos , Temblor Esencial/fisiopatología , Temblor Esencial/terapia , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia , Tálamo/fisiología , Tálamo/fisiopatología , Mapeo Encefálico , Corteza Cerebral/fisiopatología , Núcleos Talámicos Ventrales/fisiología , Núcleos Talámicos Ventrales/fisiopatología
2.
Mov Disord ; 38(5): 806-817, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37208967

RESUMEN

BACKGROUND: Diagnosis of atypical parkinsonian syndromes (APS) mostly relies on clinical presentation as well as structural and molecular brain imaging. Whether parkinsonian syndromes are distinguishable based on neuronal oscillations has not been investigated so far. OBJECTIVE: The aim was to identify spectral properties specific to atypical parkinsonism. METHODS: We measured resting-state magnetoencephalography in 14 patients with corticobasal syndrome (CBS), 16 patients with progressive supranuclear palsy (PSP), 33 patients with idiopathic Parkinson's disease, and 24 healthy controls. We compared spectral power as well as amplitude and frequency of power peaks between groups. RESULTS: Atypical parkinsonism was associated with spectral slowing, distinguishing both CBS and PSP from Parkinson's disease (PD) and age-matched healthy controls. Patients with atypical parkinsonism showed a shift in ß peaks (13-30 Hz) toward lower frequencies in frontal areas bilaterally. A concomitant increase in θ/α power relative to controls was observed in both APS and PD. CONCLUSION: Spectral slowing occurs in atypical parkinsonism, affecting frontal ß oscillations in particular. Spectral slowing with a different topography has previously been observed in other neurodegenerative disorders, such as Alzheimer's disease, suggesting that spectral slowing might be an electrophysiological marker of neurodegeneration. As such, it might support differential diagnosis of parkinsonian syndromes in the future. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Atrofia de Múltiples Sistemas , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Trastornos Parkinsonianos , Parálisis Supranuclear Progresiva , Humanos , Trastornos Parkinsonianos/diagnóstico por imagen , Enfermedad de Parkinson/diagnóstico , Parálisis Supranuclear Progresiva/diagnóstico por imagen , Enfermedades Neurodegenerativas/diagnóstico , Encéfalo , Diagnóstico Diferencial , Atrofia de Múltiples Sistemas/diagnóstico
3.
Metab Brain Dis ; 38(4): 1221-1238, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36729261

RESUMEN

Hepatic encephalopathy (HE) is a common neurological manifestation of liver cirrhosis and is characterized by an increase of ammonia in the brain accompanied by a disrupted neurotransmitter balance, including the GABAergic and glutamatergic systems. The aim of this study is to investigate metabolic abnormalities in the cerebello-thalamo-cortical system of HE patients using GABA-edited MRS and links between metabolite levels, disease severity, critical flicker frequency (CFF), motor performance scores, and blood ammonia levels. GABA-edited MRS was performed in 35 participants (16 controls, 19 HE patients) on a clinical 3 T MRI system. MRS voxels were placed in the right cerebellum, left thalamus, and left motor cortex. Levels of GABA+ and of other metabolites of interest (glutamine, glutamate, myo-inositol, glutathione, total choline, total NAA, and total creatine) were assessed. Group differences in metabolite levels and associations with clinical metrics were tested. GABA+ levels were significantly increased in the cerebellum of patients with HE. GABA+ levels in the motor cortex were significantly decreased in HE patients, and correlated with the CFF (r = 0.73; p < .05) and motor performance scores (r = -0.65; p < .05). Well-established HE-typical metabolite patterns (increased glutamine, decreased myo-inositol and total choline) were confirmed in all three regions and were closely linked to clinical metrics. In summary, our findings provide further evidence for alterations in the GABAergic system in the cerebellum and motor cortex in HE. These changes were accompanied by characteristic patterns of osmolytes and oxidative stress markers in the cerebello-thalamo-cortical system. These metabolic disturbances are a likely contributor to HE motor symptoms in HE. In patients with hepatic encephalopathy, GABA+ levels in the cerebello-thalamo-cortical loop are significantly increased in the cerebellum and significantly decreased in the motor cortex. GABA+ levels in the motor cortex strongly correlate with critical flicker frequency (CFF) and motor performance score (pegboard test tPEG), but not blood ammonia levels (NH3).


Asunto(s)
Encefalopatía Hepática , Humanos , Encefalopatía Hepática/metabolismo , Glutamina/metabolismo , Amoníaco , Cerebelo/diagnóstico por imagen , Cerebelo/metabolismo , Inositol , Ácido gamma-Aminobutírico/metabolismo , Colina/metabolismo
4.
Brain Sci ; 12(1)2022 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-35053829

RESUMEN

BACKGROUND: Current approaches to detect the positions and orientations of directional deep brain stimulation (DBS) electrodes rely on radiative imaging data. In this study, we aim to present an improved version of a radiation-free method for magnetic detection of the position and the orientation (MaDoPO) of directional electrodes based on a series of magnetoencephalography (MEG) measurements and a possible future solution for optimized results using emerging on-scalp MEG systems. METHODS: A directional DBS system was positioned into a realistic head-torso phantom and placed in the MEG scanner. A total of 24 measurements of 180 s each were performed with different predefined electrode configurations. Finite element modeling and model fitting were used to determine the position and orientation of the electrode in the phantom. Related measurements were fitted simultaneously, constraining solutions to the a priori known geometry of the electrode. Results were compared with the results of the high-quality CT imaging of the phantom. RESULTS: The accuracy in electrode localization and orientation detection depended on the number of combined measurements. The localization error was minimized to 2.02 mm by considering six measurements with different non-directional bipolar electrode configurations. Another six measurements with directional bipolar stimulations minimized the orientation error to 4°. These values are mainly limited due to the spatial resolution of the MEG. Moreover, accuracies were investigated as a function of measurement time, number of sensors, and measurement direction of the sensors in order to define an optimized MEG device for this application. CONCLUSION: Although MEG introduces inaccuracies in the detection of the position and orientation of the electrode, these can be accepted when evaluating the benefits of a radiation-free method. Inaccuracies can be further reduced by the use of on-scalp MEG sensor arrays, which may find their way into clinics in the foreseeable future.

5.
J Neural Eng ; 18(5)2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34598173

RESUMEN

Objective.The aim of the present study was to evaluate the effect of different electrode configurations on the accuracy of determining the rotational orientation of the directional deep brain stimulation (DBS) electrode with our previously published magnetoencephalography (MEG)-based method.Approach.A directional DBS electrode, along with its implantable pulse generator, was integrated into a head phantom and placed within the MEG sensor array. Predefined bipolar electrode configurations, based on activation of different directional and omnidirectional contacts of the electrode, were set to generate a defined magnetic field during stimulation. This magnetic field was then measured with MEG. Finite element modeling and model fitting approach were used to calculate electrode orientation.Main results.The accuracy of electrode orientation detection depended on the electrode configuration: the vertical configuration (activation of two directional contacts arranged one above the other) achieved an average accuracy of only about 41 ∘. The diagonal configuration (activation of the electrode tip and a single directional contact at the next higher level of the electrode) achieved an accuracy of 13∘, while the horizontal electrode configuration (activation of two adjacent directional contacts at the same electrode level) achieved the best accuracy of 6∘. The accuracy of orientation detection of the DBS electrode depends on the change in spatial distribution of the magnetic field with the rotation of the electrode along its own axis. In the vertical configuration, rotation of the electrode has a small effect on the magnetic field distribution, while in the diagonal or horizontal configuration, electrode rotation has a significant effect on the magnetic field distribution.Significance.Our work suggests that in order to determine rotational orientation of a DBS electrode using MEG, horizontal configuration should be used as it provides the most accurate results compared to other possible configurations.


Asunto(s)
Estimulación Encefálica Profunda , Magnetoencefalografía , Electrodos , Fantasmas de Imagen , Rotación
6.
NPJ Parkinsons Dis ; 7(1): 86, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34561455

RESUMEN

Many Parkinson's disease (PD) patients are able to ride a bicycle despite being severely compromised by gait disturbances up to freezing of gait. This review [PROSPERO CRD 42019137386] aimed to find out, which PD-related symptoms improve from bicycling, and which type of bicycling exercise would be most beneficial. Following a systematic database literature search, peer-reviewed studies with randomized control trials (RCT) and with non-randomized trials (NRCT) investigating the interventional effects of bicycling on PD patients were included. A quality analysis addressing reporting, design and possible bias of the studies, as well as a publication bias test was done. Out of 202 references, 22 eligible studies with 505 patients were analysed. An inverse variance-based analysis revealed that primary measures, defined as motor outcomes, benefitted from bicycling significantly more than cognitive measures. Additionally, secondary measures of balance, walking speed and capacity, and the PDQ-39 ratings improved with bicycling. The interventions varied in durations, intensities and target cadences. Conclusively, bicycling is particularly beneficial for the motor performance of PD patients, improving crucial features of gait. Furthermore, our findings suggest that bicycling improves the overall quality-of-life of PD patients.

7.
Clin Neurophysiol ; 132(10): 2332-2341, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34454259

RESUMEN

OBJECTIVE: Hepatic encephalopathy (HE) is a potentially reversible brain dysfunction caused by liver failure. Altered synaptic plasticity is supposed to play a major role in the pathophysiology of HE. Here, we used paired associative stimulation with an inter-stimulus interval of 25 ms (PAS25), a transcranial magnetic stimulation (TMS) protocol, to test synaptic plasticity of the motor cortex in patients with manifest HE. METHODS: 23 HE-patients and 23 healthy controls were enrolled in the study. Motor evoked potential (MEP) amplitudes were assessed as measure for cortical excitability. Time courses of MEP amplitude changes after the PAS25 intervention were compared between both groups. RESULTS: MEP-amplitudes increased after PAS25 in the control group, indicating PAS25-induced synaptic plasticity in healthy controls, as expected. In contrast, MEP-amplitudes within the HE group did not change and were lower than in the control group, indicating no induction of plasticity. CONCLUSIONS: Our study revealed reduced synaptic plasticity of the primary motor cortex in HE. SIGNIFICANCE: Reduced synaptic plasticity in HE provides a link between pathological changes on the molecular level and early clinical symptoms of the disease. This decrease may be caused by disturbances in the glutamatergic neurotransmission due to the known hyperammonemia in HE patients.


Asunto(s)
Potenciales Evocados Motores/fisiología , Encefalopatía Hepática/fisiopatología , Corteza Motora/fisiología , Plasticidad Neuronal/fisiología , Aprendizaje por Asociación de Pares/fisiología , Estimulación Magnética Transcraneal/métodos , Anciano , Femenino , Encefalopatía Hepática/diagnóstico , Encefalopatía Hepática/terapia , Humanos , Masculino , Persona de Mediana Edad
8.
Biol Chem ; 402(9): 1087-1102, 2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34049427

RESUMEN

Hepatic encephalopathy (HE) is a frequent neuropsychiatric complication in patients with acute or chronic liver failure. Symptoms of HE in particular include disturbances of sensory and motor functions and cognition. HE is triggered by heterogeneous factors such as ammonia being a main toxin, benzodiazepines, proinflammatory cytokines and hyponatremia. HE in patients with liver cirrhosis is triggered by a low-grade cerebral edema and cerebral oxidative/nitrosative stress which bring about a number of functionally relevant alterations including posttranslational protein modifications, oxidation of RNA, gene expression changes and senescence. These alterations are suggested to impair astrocyte/neuronal functions and communication. On the system level, a global slowing of oscillatory brain activity and networks can be observed paralleling behavioral perceptual and motor impairments. Moreover, these changes are related to increased cerebral ammonia, alterations in neurometabolite and neurotransmitter concentrations and cortical excitability in HE patients.


Asunto(s)
Encefalopatía Hepática , Astrocitos , Edema Encefálico , Humanos
9.
Sensors (Basel) ; 21(7)2021 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-33916581

RESUMEN

Correct position and orientation of a directional deep brain stimulation (DBS) electrode in the patient's brain must be known to fully exploit its benefit in guiding stimulation programming. Magnetoelectric (ME) sensors can play a critical role here. The aim of this study was to determine the minimum required limit of detection (LOD) of a ME sensor that can be used for this application by measuring the magnetic field induced by DBS. For this experiment, a commercial DBS system was integrated into a head phantom and placed inside of a state-of-the-art Superconducting Quantum Interference Device (SQUID)-based magnetoencephalography system. Measurements were performed and analyzed with digital signal processing. Investigations have shown that the minimum required detection limit depends on various factors such as: measurement distance to electrode, bandwidth of magnetic sensor, stimulation amplitude, stimulation pulse width, and measurement duration. For a sensor that detects only a single DBS frequency (stimulation frequency or its harmonics), a LOD of at least 0.04 pT/Hz0.5 is required for 3 mA stimulation amplitude and 60 µµs pulse width. This LOD value increases by an order of magnitude to 0.4 pT/Hz0.5 for a 1 kHz, and by approximately two orders to 3 pT/Hz0.5 for a 10 kHz sensor bandwidth. By averaging, the LOD can be reduced by at least another 2 orders of magnitude with a measurement duration of a few minutes.

10.
J Neural Eng ; 18(2)2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33503598

RESUMEN

Objective.The aim of the present study was to investigate the accuracy of localization and rotational orientation detection of a directional deep brain stimulation (DBS) electrode using a state-of-the-art magnetoencephalography (MEG) scanner.Approach.A directional DBS electrode along with its stimulator was integrated into a head phantom and placed inside the MEG sensor array. The electrode was comprised of six directional and two omnidirectional contacts. Measurements were performed while stimulating with different contacts and parameters in the phantom. Finite element modeling and fitting approach were used to compute electrode position and orientation.Main results.The electrode was localized with a mean accuracy of 2.2 mm while orientation was determined with a mean accuracy of 11∘. The limitation in detection accuracy was due to the lower measurement precision of the MEG system. Considering an ideal measurement condition, these values represent the lower bound of accuracy that can be achieved in patients.Significance.However, a future magnetic measuring system with higher precision will potentially detect location and orientation of a DBS electrode with an even greater accuracy.


Asunto(s)
Estimulación Encefálica Profunda , Magnetoencefalografía , Animales , Decapodiformes , Estimulación Encefálica Profunda/métodos , Electrodos , Humanos , Magnetoencefalografía/métodos , Fantasmas de Imagen
11.
J Neurol ; 268(4): 1526-1532, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33277666

RESUMEN

BACKGROUND: A reliable measure of PSP-specific midbrain atrophy, the midbrain-to-pons ratio (MTPR) has been reported to support the differential diagnosis of progressive supranuclear palsy (PSP) from idiopathic Parkinson's disease (IPD). Since longitudinal analyses are lacking so far, the present study aimed to evaluate the diagnostic value of the relative change of MTPR (relΔt_MTPR) over a 1-year period in patients with PSP, IPD, and healthy controls (HC). METHODS: Midsagittal individual MRIs of patients with PSP (n = 15), IPD (n = 15), and healthy controls (HC; n = 15) were assessed and the MTPR at baseline and after 1 year were defined. The diagnostic accuracy of the MTPR and its relative change were evaluated using ROC curve analyses. RESULTS: PSP-patients had a significantly lower MTPR at baseline (M = 0.45 ± 0.06), compared to both non-PSP groups (F (2, 41) = 62.82, p < 0.001), with an overall predictive accuracy of 95.6% for an MTPR ≤ 0.54. PSP-patients also presented a significantly stronger 1-year decline in MTPR compared to IPD (p < 0.001). Though predictive accuracy of relΔt_MTPR for PSP (M = - 4.74% ± 4.48) from IPD (M = + 1.29 ± 3.77) was good (76.6%), ROC analysis did not reveal a significant improvement of diagnostic accuracy by combining the MTPR and relΔt_MTPR (p = 0.670). Still, specificity for PSP increased, though not significantly (p = 0.500). CONCLUSION: The present results indicate that the relΔt_MTPR is a potentially useful tool to support the differential diagnosis of PSP from IPD. For its relative 1-year change, still, more evaluation is needed.


Asunto(s)
Enfermedad de Parkinson , Parálisis Supranuclear Progresiva , Diagnóstico Diferencial , Humanos , Imagen por Resonancia Magnética , Mesencéfalo/diagnóstico por imagen , Enfermedad de Parkinson/diagnóstico por imagen , Puente , Parálisis Supranuclear Progresiva/diagnóstico por imagen
12.
Front Neurol ; 11: 655, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32754112

RESUMEN

Deep brain stimulation (DBS) has significant effects on motor symptoms in Parkinson's disease (PD), but existing studies on the effect of DBS on speech are rather inconclusive. It is assumed that deficits in auditory-motor integration strongly contribute to Parkinsonian speech pathology. The aim of the present study was to assess whether subthalamic DBS can modulate these deficits. Twenty PD patients (15 male, 5 female; 62.4 ± 6.7 years) with subthalamic DBS were exposed to pitch-shifted acoustic feedback during vowel vocalization and subsequent listening. Voice and brain activity were measured ON and OFF stimulation using magnetoencephalography (MEG). Vocal responses and auditory evoked responses time locked to the onset of pitch-shifted feedback were examined. A positive correlation between vocal response magnitude and pitch variability was observed for both, stimulation ON and OFF (ON: r = 0.722, p < 0.001, OFF: r = 0.746, p < 0.001). However, no differences of vocal responses to pitch-shifted feedback between the stimulation conditions were found [t (19) = -0.245, p = 0.809, d = -0.055]. P200m amplitudes of event related fields (ERF) of left and right auditory cortex (AC) and superior temporal gyrus (STG) were significantly larger during listening [left AC P200m: F (1, 19) = 10.241, p = 0.005, f = 0.734; right STG P200m: F (1, 19) = 8.393, p = 0.009, f = 0.664]. Subthalamic DBS appears to have no substantial effect on vocal compensations, although it has been suggested that auditory-motor integration deficits contribute to higher vocal response magnitudes in pitch perturbation experiments with PD patients. Thus, DBS seems to be limited in modulating auditory-motor integration of speech in PD.

13.
Clin Neurophysiol ; 130(6): 886-892, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30981173

RESUMEN

OBJECTIVE: Previous animal work reported that hyperammonemia leads to opposing changes of GABAergic neurotransmission in terms of increase in the cerebellum and decrease in the cerebral cortex. In this study, we investigate GABAergic tone in the cerebellum in patients with hepatic encephalopathy (HE) at different stages of the disease and its relation to critical flicker frequency (CFF) and ataxia. METHODS: Cerebellar inhibition using transcranial magnetic stimulation was investigated in 15 patients with different stages of HE and 15 healthy controls. All patients were assessed using CFF and the score for assessment and rating of ataxia (SARA). RESULTS: Decreased cerebellar inhibition (CBI) was observed in manifest HE at interstimulus interval from 5 to 7 ms. However, the degree of CBI at 7 ms correlated significantly with disease severity measured with SARA and with CFF by trend. CONCLUSION: Reduced CBI in HE patients indicates affection of the cerebellar efferent pathway. The disease severity dependent increase of CBI magnitude supports the notion of disease stage dependent increase of GABAergic neurotransmission in Purkinje cells. SIGNIFICANCE: The results support previous animal experiments showing increase of GABA-ergic neurotransmission in the cerebellum and decrease in the motor cortex in HE.


Asunto(s)
Cerebelo/fisiología , Encefalopatía Hepática/fisiopatología , Inhibición Neural/fisiología , Estimulación Magnética Transcraneal/métodos , Anciano , Potenciales Evocados Motores/fisiología , Femenino , Neuronas GABAérgicas/fisiología , Encefalopatía Hepática/diagnóstico , Humanos , Masculino , Persona de Mediana Edad
14.
Clin Neurophysiol ; 130(6): 911-916, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30981176

RESUMEN

OBJECTIVE: The GABA hypothesis of hepatic encephalopathy (HE) proposes an increased cerebral GABA-ergic tone in HE but has not been investigated in vivo in HE-patients yet. Cortical GABA-ergic and glutamatergic neurotransmission in HE-patients were evaluated using transcranial magnetic stimulation. METHODS: Twenty-one patients with HE grade 1 and 2 and age matched controls participated in the study. GABA-ergic (short- and long-interval intracortical inhibition (SICI and LICI)) and glutamatergic (intracortical and short-interval intracortical facilitation (ICF and SICF)) excitability of the primary motor cortex (M1) and global corticospinal excitability (motor threshold, motor evoked potential recruitment curve (MEP-RC) were compared between the groups. SICI and ICF were correlated to the critical flicker frequency (CFF) as measure for disease severity. RESULTS: In HE-patients, the slope of MEP-RC was significantly shallower compared to healthy controls. SICI was significantly reduced in patients with HE grade 2 compared to healthy controls. In HE-patients, SICI and ICF was significantly correlated to CFF. CONCLUSION: Although global corticospinal excitability was reduced in HE-patients, GABA-ergic inhibition was reduced in M1 depending on HE severity. Moreover CFF related alteration of GABAergic and glutamatergic neurotransmission in patients with HE could support the notion of a severity dependent alteration of cortical excitability. SIGNIFICANCE: The decrease of cortical GABA-ergic tone challenges the classical GABA hypothesis in HE.


Asunto(s)
Electromiografía/métodos , Neuronas GABAérgicas/fisiología , Encefalopatía Hepática/diagnóstico , Encefalopatía Hepática/fisiopatología , Corteza Motora/fisiología , Estimulación Magnética Transcraneal/métodos , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad
15.
Neuroimage Clin ; 22: 101743, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30856541

RESUMEN

Hepatic encephalopathy (HE) is a common complication in liver cirrhosis and associated with an invasion of ammonia into the brain through the blood-brain barrier. Resulting higher ammonia concentrations in the brain are suggested to lead to a dose-dependent gradual increase of HE severity and an associated impairment of brain function. Amide proton transfer-weighted (APTw) chemical exchange saturation transfer (CEST) imaging has been found to be sensitive to ammonia concentration. The aim of this work was to study APTw CEST imaging in patients with HE and to investigate the relationship between disease severity, critical flicker frequency (CFF), psychometric test scores, blood ammonia, and APTw signals in different brain regions. Whole-brain APTw CEST images were acquired in 34 participants (14 controls, 20 patients (10 minimal HE, 10 manifest HE)) on a 3 T clinical MRI system accompanied by T1 mapping and structural images. T1 normalized magnetization transfer ratio asymmetry analysis was performed around 3 ppm after B0 and B1 correction to create APTw images. All APTw images were spatially normalized into a cohort space to allow direct comparison. APTw images in 6 brain regions (cerebellum, occipital cortex, putamen, thalamus, caudate, white matter) were tested for group differences as well as the link to CFF, psychometric test scores, and blood ammonia. A decrease in APTw intensities was found in the cerebellum and the occipital cortex of manifest HE patients. In addition, APTw intensities in the cerebellum correlated positively with several psychometric scores, such as the fine motor performance scores MLS1 for hand steadiness / tremor (r = 0.466; p = .044) and WRT2 for motor reaction time (r = 0.523; p = .022). Moreover, a negative correlation between APTw intensities and blood ammonia was found for the cerebellum (r = -0.615; p = .007) and the occipital cortex (r = -0.478; p = .045). An increase of APTw intensities was observed in the putamen of patients with minimal HE and correlated negatively with the CFF (r = -0.423; p = .013). Our findings demonstrate that HE is associated with regional differential alterations in APTw signals. These variations are most likely a consequence of hyperammonemia or hepatocerebral degeneration processes, and develop in parallel with disease severity.


Asunto(s)
Cerebelo/diagnóstico por imagen , Encefalopatía Hepática/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Lóbulo Occipital/diagnóstico por imagen , Anciano , Cerebelo/metabolismo , Femenino , Encefalopatía Hepática/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Lóbulo Occipital/metabolismo
16.
Front Neurol ; 10: 145, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30899240

RESUMEN

Functional magnetic resonance imaging studies suggest that different subcortico-cortical circuits control different aspects of Parkinsonian rest tremor. The basal ganglia were proposed to drive tremor onset, and the cerebellum was suggested to be responsible for tremor maintenance ("dimmer-switch" hypothesis). Although several electrophysiological correlates of tremor have been described, it is currently unclear whether any of these is specific to tremor onset or maintenance. In this study, we present data from a single patient measured repeatedly within 2 years after implantation of a deep brain stimulation (DBS) system capable of recording brain activity from the target. Local field potentials (LFPs) from the subthalamic nucleus and the scalp electroencephalogram were recorded 1 week, 3 months, 6 months, 1 year, and 2 years after surgery. Importantly, the patient suffered from severe rest tremor of the lower limbs, which could be interrupted voluntarily by repositioning the feet. This provided the unique opportunity to record many tremor onsets in succession. We found that tremor onset and tremor maintenance were characterized by distinct modulations of subthalamic oscillations. Alpha/low-beta power increased transiently immediately after tremor onset. In contrast, beta power was continuously suppressed during tremor maintenance. Tremor maintenance was additionally associated with subthalamic and cortical power increases around individual tremor frequency. To our knowledge, this is the first evidence of distinct subthalamic LFP modulations in tremor onset and tremor maintenance. Our observations suggest the existence of an acceleration signal for Parkinsonian rest tremor in the basal ganglia, in line with the "dimmer-switch" hypothesis.

18.
Front Psychol ; 9: 2059, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30425672

RESUMEN

The sensory system constantly receives stimuli from the external world. To discriminate two stimuli correctly as two temporally distinct events, the temporal distance or stimulus onset asynchrony (SOA) between the two stimuli has to exceed a specific threshold. If the SOA between two stimuli is shorter than this specific threshold, the two stimuli will be perceptually fused and perceived as one single stimulus. Patients with hepatic encephalopathy (HE) are known to show manifold perceptual impairments, including slowed visual temporal discrimination abilities as measured by the critical flicker frequency (CFF). Here, we hypothesized that HE patients are also impaired in their tactile temporal discrimination abilities and, thus, require a longer SOA between two tactile stimuli to perceive the stimuli as two temporally distinct events. To test this hypothesis, patients with varying grades of HE and age-matched healthy individuals performed a tactile temporal discrimination task. All participants received two tactile stimuli with varying SOA applied to their left index finger and reported how many distinct stimuli they perceived ("1" vs. "2"). HE patients needed a significantly longer SOA (138.0 ± 11.3 ms) between two tactile stimuli to perceive the stimuli as two temporally distinct events than healthy controls (78.6 ± 13.1 ms; p < 0.01). In addition, we found that the temporal discrimination ability in the tactile modality correlated positively with the temporal discrimination ability in the visual domain across all participants (i.e., negative correlation between tactile SOA and visual CFF: r = -0.37, p = 0.033). Our findings provide evidence that temporal tactile perception is substantially impaired in HE patients. In addition, the results suggest that tactile and visual discrimination abilities are affected in HE in parallel. This finding might argue for a common underlying pathophysiological mechanism. We argue that the known global slowing of neuronal oscillations in HE might represent such a common mechanism.

19.
Neuroimage Clin ; 20: 347-356, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30109194

RESUMEN

Recent studies have proposed a connection between the individual alpha band peak frequency and the temporal resolution of visual perception in healthy human participants. This connection rests on animal studies describing oscillations in the alpha band as a mode of phasic thalamocortical information transfer for low-level visual stimuli, which critically relies on GABAergic interneurons. Here, we investigated the interplay of these parameters by measuring occipital alpha band peak frequency by means of magnetoencephalography, visual temporal resolution by means of behavioral testing, and occipital GABA levels by means of magnetic resonance spectroscopy. Importantly, we investigated a sample of healthy participants and patients with varying grades of hepatic encephalopathy, which are known to exhibit decreases in the investigated parameters, thus providing an increased parameter space. We found that occipital alpha band peak frequency and visual temporal resolution were positively correlated, i.e., higher occipital alpha band peak frequencies were on average related to a higher temporal resolution. Likewise, occipital alpha band peak frequency correlated positively with occipital GABA levels. However, correlations were significant only when both healthy participants and patients were included in the analysis, thereby indicating a connection of the measures on group level (instead of the individual level). These findings provide new insights into neurophysiological and neurochemical underpinnings of visual perception.


Asunto(s)
Ritmo alfa/fisiología , Encefalopatía Hepática/metabolismo , Lóbulo Occipital/metabolismo , Percepción Visual/fisiología , Ácido gamma-Aminobutírico/metabolismo , Anciano , Femenino , Voluntarios Sanos , Encefalopatía Hepática/diagnóstico por imagen , Humanos , Espectroscopía de Resonancia Magnética/métodos , Magnetoencefalografía/métodos , Masculino , Persona de Mediana Edad , Lóbulo Occipital/diagnóstico por imagen , Estimulación Luminosa/métodos
20.
NMR Biomed ; 31(9): e3947, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29975436

RESUMEN

Hepatic encephalopathy (HE) is triggered by liver cirrhosis and is associated with an increased ammonia level within the brain tissue. The goal of this study was to investigate effects of ammonia on in vitro amide proton transfer (APT)-weighted chemical exchange saturation transfer (CEST) imaging in order to develop an ammonia-sensitive brain imaging method. APT-weighted CEST imaging was performed on phantom solutions including pure ammonia, bovine serum albumin (BSA), and tissue homogenate samples doped with various ammonia concentrations. All CEST data were assessed by magnetization transfer ratio asymmetry. In addition, optical methods were used to determine possible structural changes of the proteins in the BSA phantom. In vivo feasibility measurements were acquired in one healthy participant and two patients suffering from HE, a disease associated with increased brain ammonia levels. The CEST effect of pure ammonia showed a base-catalyzed behavior. At pH values greater than 5.6 no CEST effect was observed. The APT-weighted signal was significantly reduced for ammonia concentrations of 5mM or more at fixed pH values within the different protein phantom solutions. The optical methods revealed no protein aggregation or denaturation for ammonia concentrations less than 5mM. The in vivo measurements showed tissue specific and global reduction of the observed CEST signal in patients with HE, possibly linked to pathologically increased ammonia levels. APT-weighted CEST imaging is sensitive to changes in ammonia concentrations. Thus, it seems useful for the investigation of pathologies with altered tissue ammonia concentrations such as HE. However, the underlying mechanism needs to be explored in more detail in future in vitro and in vivo investigations.


Asunto(s)
Amoníaco/química , Imagen por Resonancia Magnética , Animales , Bovinos , Dispersión Dinámica de Luz , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Fantasmas de Imagen , Albúmina Sérica Bovina/metabolismo , Soluciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA