Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Cell Genom ; 4(4): 100539, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38604127

RESUMEN

Polygenic risk scores (PRSs) are now showing promising predictive performance on a wide variety of complex traits and diseases, but there exists a substantial performance gap across populations. We propose MUSSEL, a method for ancestry-specific polygenic prediction that borrows information in summary statistics from genome-wide association studies (GWASs) across multiple ancestry groups via Bayesian hierarchical modeling and ensemble learning. In our simulation studies and data analyses across four distinct studies, totaling 5.7 million participants with a substantial ancestral diversity, MUSSEL shows promising performance compared to alternatives. For example, MUSSEL has an average gain in prediction R2 across 11 continuous traits of 40.2% and 49.3% compared to PRS-CSx and CT-SLEB, respectively, in the African ancestry population. The best-performing method, however, varies by GWAS sample size, target ancestry, trait architecture, and linkage disequilibrium reference samples; thus, ultimately a combination of methods may be needed to generate the most robust PRSs across diverse populations.


Asunto(s)
Bivalvos , Herencia Multifactorial , Humanos , Animales , Herencia Multifactorial/genética , Estudio de Asociación del Genoma Completo/métodos , Teorema de Bayes , Fenotipo , Puntuación de Riesgo Genético
2.
Ann Clin Transl Neurol ; 11(4): 899-904, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38337113

RESUMEN

OBJECTIVE: Mutations in the glucocerebrosidase (GBA1) gene and subthalamic nucleus deep brain stimulation (STN-DBS) are independently associated with cognitive dysfunction in persons with Parkinson's disease (PwP). We hypothesized that PwP with both GBA1 mutations and STN-DBS are at greater risk of cognitive dysfunction than PwP with only GBA1 mutations or STN-DBS, or neither. In this study, we determined the pattern of cognitive dysfunction in PwP based on GBA1 mutation status and STN-DBS treatment. METHODS: PwP who are GBA1 mutation carriers with or without DBS (GBA1+DBS+, GBA1+DBS-), and noncarriers with or without DBS (GBA1-DBS+, GBA1-DBS-) were included. Using the NIH Toolbox, cross-sectional differences in response inhibition, processing speed, and episodic memory were compared using analysis of variance with adjustment for relevant covariates. RESULTS: Data were available for 9 GBA1+DBS+, 14 GBA1+DBS-, 17 GBA1-DBS+, and 26 GBA1-DBS- PwP. In this cross-sectional study, after adjusting for covariates, we found that performance on the Flanker test (measure of response inhibition) was lower in GBA1+DBS+ PwP compared with GBA1-DBS+ PwP (P = 0.030). INTERPRETATION: PwP who carry GBA1 mutations and have STN-DBS have greater impaired response inhibition compared with PwP with STN-DBS but without GBA1 mutations. Longitudinal data, including preoperative scores, are required to definitively determine whether GBA1 mutation carriers respond differently to STN-DBS, particularly in the domain of response inhibition.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/terapia , Estudios Transversales , Glucosilceramidasa/genética
3.
Int J Mol Sci ; 24(17)2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37686052

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by restrictive interests and/or repetitive behaviors and deficits in social interaction and communication. ASD is a multifactorial disease with a complex polygenic genetic architecture. Its genetic contributing factors are not yet fully understood, especially large structural variations (SVs). In this study, we aimed to assess the contribution of SVs, including copy number variants (CNVs), insertions, deletions, duplications, and mobile element insertions, to ASD and related language impairments in the New Jersey Language and Autism Genetics Study (NJLAGS) cohort. Within the cohort, ~77% of the families contain SVs that followed expected segregation or de novo patterns and passed our filtering criteria. These SVs affected 344 brain-expressed genes and can potentially contribute to the genetic etiology of the disorders. Gene Ontology and protein-protein interaction network analysis suggested several clusters of genes in different functional categories, such as neuronal development and histone modification machinery. Genes and biological processes identified in this study contribute to the understanding of ASD and related neurodevelopment disorders.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Trastornos del Desarrollo del Lenguaje , Humanos , Trastorno del Espectro Autista/genética , Lenguaje , Encéfalo , Trastornos del Desarrollo del Lenguaje/genética
4.
Genes (Basel) ; 14(9)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37761888

RESUMEN

Genetics researchers increasingly combine data across many sources to increase power and to conduct analyses that cross multiple individual studies. However, there is often a lack of alignment on outcome measures when the same constructs are examined across studies. This inhibits comparison across individual studies and may impact the findings from meta-analysis. Using a well-characterized genotypic (brain-derived neurotrophic factor: BDNF) and phenotypic constructs (working memory and reading comprehension), we employ an approach called Rosetta, which allows for the simultaneous examination of primary studies that employ related but incompletely overlapping data. We examined four studies of BDNF, working memory, and reading comprehension with a combined sample size of 1711 participants. Although the correlation between working memory and reading comprehension over all participants was high, as expected (ρ = 0.45), the correlation between working memory and reading comprehension was attenuated in the BDNF Met/Met genotype group (ρ = 0.18, n.s.) but not in the Val/Val (ρ = 0.44) or Val/Met (ρ = 0.41) groups. These findings indicate that Met/Met carriers may be a unique and robustly defined subgroup in terms of memory and reading comprehension. This study demonstrates the utility of the Rosetta method when examining complex phenotypes across multiple studies, including psychiatric genetic studies, as shown here, and also for the mega-analysis of cohorts generally.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Sitios de Carácter Cuantitativo , Humanos , Factor Neurotrófico Derivado del Encéfalo/genética , Imagen por Resonancia Magnética , Fenotipo , Cognición
5.
bioRxiv ; 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37090648

RESUMEN

Polygenic risk scores (PRS) are now showing promising predictive performance on a wide variety of complex traits and diseases, but there exists a substantial performance gap across different populations. We propose MUSSEL, a method for ancestry-specific polygenic prediction that borrows information in the summary statistics from genome-wide association studies (GWAS) across multiple ancestry groups. MUSSEL conducts Bayesian hierarchical modeling under a MUltivariate Spike-and-Slab model for effect-size distribution and incorporates an Ensemble Learning step using super learner to combine information across different tuning parameter settings and ancestry groups. In our simulation studies and data analyses of 16 traits across four distinct studies, totaling 5.7 million participants with a substantial ancestral diversity, MUSSEL shows promising performance compared to alternatives. The method, for example, has an average gain in prediction R2 across 11 continuous traits of 40.2% and 49.3% compared to PRS-CSx and CT-SLEB, respectively, in the African Ancestry population. The best-performing method, however, varies by GWAS sample size, target ancestry, underlying trait architecture, and the choice of reference samples for LD estimation, and thus ultimately, a combination of methods may be needed to generate the most robust PRS across diverse populations.

6.
Hum Genet ; 142(2): 217-230, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36251081

RESUMEN

Autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) are two major neurodevelopmental disorders that frequently co-occur. However, the genetic mechanism of the co-occurrence remains unclear. The New Jersey Language and Autism Genetics Study (NJLAGS) collected more than 100 families with at least one member affected by ASD. NJLAGS families show a high prevalence of ADHD and provide a good opportunity to study shared genetic risk factors for ASD and ADHD. The linkage study of the NJLAGS families revealed regions on chromosomes 12 and 17 that are significantly associated with ADHD. Using whole-genome sequencing data on 272 samples from 73 NJLAGS families, we identified potential risk genes for ASD and ADHD. Within the linkage regions, we identified 36 genes that are associated with ADHD using a pedigree-based gene prioritization approach. KDM6B (Lysine Demethylase 6B) is the highest-ranking gene, which is a known risk gene for neurodevelopmental disorders, including ASD and ADHD. At the whole-genome level, we identified 207 candidate genes from the analysis of both small variants and structure variants, including both known and novel genes. Using enrichment and protein-protein interaction network analyses, we identified gene ontology terms and pathways enriched for ASD and ADHD candidate genes, such as cilia function and cation channel activity. Candidate genes and pathways identified in our study improve the understanding of the genetic etiology of ASD and ADHD and will lead to new diagnostic or therapeutic interventions for ASD and ADHD in the future.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Trastorno del Espectro Autista/epidemiología , Trastorno del Espectro Autista/genética , Trastorno por Déficit de Atención con Hiperactividad/epidemiología , Trastorno por Déficit de Atención con Hiperactividad/genética , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico , Trastorno Autístico/genética , Prevalencia , Factores de Riesgo , Histona Demetilasas con Dominio de Jumonji
7.
Hum Mol Genet ; 32(5): 873-882, 2023 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-36308435

RESUMEN

Inflammatory bowel disease (IBD) is an immune-mediated chronic intestinal disorder with major phenotypes: ulcerative colitis (UC) and Crohn's disease (CD). Multiple studies have identified over 240 IBD susceptibility loci. However, most studies have centered on European (EUR) and East Asian (EAS) populations. The prevalence of IBD in non-EUR, including African Americans (AAs), has risen in recent years. Here we present the first attempt to identify loci in AAs using a trans-ancestry Bayesian approach (MANTRA) accounting for heterogeneity between diverse ancestries while allowing for the similarity between closely related populations. We meta-analyzed genome-wide association studies (GWAS) and Immunochip data from a 2015 EUR meta-analysis of 38 155 IBD cases and 48 485 controls and EAS Immunochip study of 2824 IBD cases and 3719 controls, and our recent AA IBD GWAS of 2345 cases and 5002 controls. Across the major IBD phenotypes, we found significant evidence for 92% of 205 loci lead SNPs from the 2015 meta-analysis, but also for three IBD loci only established in latter studies. We detected 20 novel loci, all containing immunity-related genes or genes with other evidence for IBD or immune-mediated disease relevance: PLEKHG5;TNFSFR25 (encoding death receptor 3, receptor for TNFSF15 gene product TL1A), XKR6, ELMO1, BC021024;PI4KB;PSMD4 and APLP1 for IBD; AUTS2, XKR6, OSER1, TET2;AK094561, BCAP29 and APLP1 for CD; and GABBR1;MOG, DQ570892, SPDEF;ILRUN, SMARCE1;CCR7;KRT222;KRT24;KRT25, ANKS1A;TCP11, IL7, LRRC18;WDFY4, XKR6 and TNFSF4 for UC. Our study highlights the value of combining low-powered genomic studies from understudied populations of diverse ancestral backgrounds together with a high-powered study to enable novel locus discovery, including potentially important therapeutic IBD gene targets.


Asunto(s)
Colitis Ulcerosa , Enfermedad de Crohn , Enfermedades Inflamatorias del Intestino , Humanos , Teorema de Bayes , Negro o Afroamericano , Colitis Ulcerosa/genética , Enfermedad de Crohn/genética , Pueblos del Este de Asia , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Enfermedades Inflamatorias del Intestino/genética , Proteínas de la Membrana/genética , Ligando OX40/genética , Polimorfismo de Nucleótido Simple , Miembro 15 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/genética , Pueblo Europeo
8.
Nucleic Acids Res ; 51(D1): D1300-D1311, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36350676

RESUMEN

Large biobank-scale whole genome sequencing (WGS) studies are rapidly identifying a multitude of coding and non-coding variants. They provide an unprecedented resource for illuminating the genetic basis of human diseases. Variant functional annotations play a critical role in WGS analysis, result interpretation, and prioritization of disease- or trait-associated causal variants. Existing functional annotation databases have limited scope to perform online queries and functionally annotate the genotype data of large biobank-scale WGS studies. We develop the Functional Annotation of Variants Online Resources (FAVOR) to meet these pressing needs. FAVOR provides a comprehensive multi-faceted variant functional annotation online portal that summarizes and visualizes findings of all possible nine billion single nucleotide variants (SNVs) across the genome. It allows for rapid variant-, gene- and region-level queries of variant functional annotations. FAVOR integrates variant functional information from multiple sources to describe the functional characteristics of variants and facilitates prioritizing plausible causal variants influencing human phenotypes. Furthermore, we provide a scalable annotation tool, FAVORannotator, to functionally annotate large-scale WGS studies and efficiently store the genotype and their variant functional annotation data in a single file using the annotated Genomic Data Structure (aGDS) format, making downstream analysis more convenient. FAVOR and FAVORannotator are available at https://favor.genohub.org.


Asunto(s)
Genoma Humano , Programas Informáticos , Humanos , Anotación de Secuencia Molecular , Genómica , Genotipo , Variación Genética
9.
BMC Med Genomics ; 15(1): 192, 2022 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-36088317

RESUMEN

BACKGROUND: Concurrent variation in adiposity and inflammation suggests potential shared functional pathways and pleiotropic disease underpinning. Yet, exploration of pleiotropy in the context of adiposity-inflammation has been scarce, and none has included self-identified Hispanic/Latino populations. Given the high level of ancestral diversity in Hispanic American population, genetic studies may reveal variants that are infrequent/monomorphic in more homogeneous populations. METHODS: Using multi-trait Adaptive Sum of Powered Score (aSPU) method, we examined individual and shared genetic effects underlying inflammatory (CRP) and adiposity-related traits (Body Mass Index [BMI]), and central adiposity (Waist to Hip Ratio [WHR]) in HLA participating in the Population Architecture Using Genomics and Epidemiology (PAGE) cohort (N = 35,871) with replication of effects in the Cameron County Hispanic Cohort (CCHC) which consists of Mexican American individuals. RESULTS: Of the > 16 million SNPs tested, variants representing 7 independent loci were found to illustrate significant association with multiple traits. Two out of 7 variants were replicated at statistically significant level in multi-trait analyses in CCHC. The lead variant on APOE (rs439401) and rs11208712 were found to harbor multi-trait associations with adiposity and inflammation. CONCLUSIONS: Results from this study demonstrate the importance of considering pleiotropy for improving our understanding of the etiology of the various metabolic pathways that regulate cardiovascular disease development.


Asunto(s)
Adiposidad , Pleiotropía Genética , Adiposidad/genética , Hispánicos o Latinos/genética , Humanos , Inflamación/genética , Obesidad/genética
11.
Nat Med ; 28(8): 1679-1692, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35915156

RESUMEN

We report a genome-wide association study (GWAS) of coronary artery disease (CAD) incorporating nearly a quarter of a million cases, in which existing studies are integrated with data from cohorts of white, Black and Hispanic individuals from the Million Veteran Program. We document near equivalent heritability of CAD across multiple ancestral groups, identify 95 novel loci, including nine on the X chromosome, detect eight loci of genome-wide significance in Black and Hispanic individuals, and demonstrate that two common haplotypes at the 9p21 locus are responsible for risk stratification in all populations except those of African origin, in which these haplotypes are virtually absent. Moreover, in the largest GWAS for angiographically derived coronary atherosclerosis performed to date, we find 15 loci of genome-wide significance that robustly overlap with established loci for clinical CAD. Phenome-wide association analyses of novel loci and polygenic risk scores (PRSs) augment signals related to insulin resistance, extend pleiotropic associations of these loci to include smoking and family history, and precisely document the markedly reduced transferability of existing PRSs to Black individuals. Downstream integrative analyses reinforce the critical roles of vascular endothelial, fibroblast, and smooth muscle cells in CAD susceptibility, but also point to a shared biology between atherosclerosis and oncogenesis. This study highlights the value of diverse populations in further characterizing the genetic architecture of CAD.


Asunto(s)
Enfermedad de la Arteria Coronaria , Estudio de Asociación del Genoma Completo , Enfermedad de la Arteria Coronaria/genética , Predisposición Genética a la Enfermedad/genética , Humanos , Polimorfismo de Nucleótido Simple/genética , Factores de Riesgo
12.
Genes (Basel) ; 13(8)2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35893067

RESUMEN

Autism spectrum disorder (ASD) is a childhood neurodevelopmental disorder with a complex and heterogeneous genetic etiology. MicroRNA (miRNA), a class of small non-coding RNAs, could regulate ASD risk genes post-transcriptionally and affect broad molecular pathways related to ASD and associated disorders. Using whole-genome sequencing, we analyzed 272 samples in 73 families in the New Jersey Language and Autism Genetics Study (NJLAGS) cohort. Families with at least one ASD patient were recruited and were further assessed for language impairment, reading impairment, and other associated phenotypes. A total of 5104 miRNA variants and 1,181,148 3' untranslated region (3' UTR) variants were identified in the dataset. After applying several filtering criteria, including population allele frequency, brain expression, miRNA functional regions, and inheritance patterns, we identified high-confidence variants in five brain-expressed miRNAs (targeting 326 genes) and 3' UTR miRNA target regions of 152 genes. Some genes, such as SCP2 and UCGC, were identified in multiple families. Using Gene Ontology overrepresentation analysis and protein-protein interaction network analysis, we identified clusters of genes and pathways that are important for neurodevelopment. The miRNAs and miRNA target genes identified in this study are potentially involved in neurodevelopmental disorders and should be considered for further functional studies.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , MicroARNs , Regiones no Traducidas 3'/genética , Alelos , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Trastorno Autístico/genética , Humanos , MicroARNs/genética , MicroARNs/metabolismo
13.
Nat Rev Genet ; 23(11): 665-679, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35581355

RESUMEN

Genome-wide association studies using large-scale genome and exome sequencing data have become increasingly valuable in identifying associations between genetic variants and disease, transforming basic research and translational medicine. However, this progress has not been equally shared across all people and conditions, in part due to limited resources. Leveraging publicly available sequencing data as external common controls, rather than sequencing new controls for every study, can better allocate resources by augmenting control sample sizes or providing controls where none existed. However, common control studies must be carefully planned and executed as even small differences in sample ascertainment and processing can result in substantial bias. Here, we discuss challenges and opportunities for the robust use of common controls in high-throughput sequencing studies, including study design, quality control and statistical approaches. Thoughtful generation and use of large and valuable genetic sequencing data sets will enable investigation of a broader and more representative set of conditions, environments and genetic ancestries than otherwise possible.


Asunto(s)
Exoma , Estudio de Asociación del Genoma Completo , Exoma/genética , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Secuenciación del Exoma
14.
BMC Infect Dis ; 22(1): 404, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35468749

RESUMEN

BACKGROUND: The Centers for Disease Control and Prevention contracted with laboratories to sequence the SARS-CoV-2 genome from positive samples across the United States to enable public health officials to investigate the impact of variants on disease severity as well as the effectiveness of vaccines and treatment. Herein we present the initial results correlating RT-PCR quality control metrics with sample collection and sequencing methods from full SARS-CoV-2 viral genomic sequencing of 24,441 positive patient samples between April and June 2021. METHODS: RT-PCR confirmed (N Gene Ct value < 30) positive patient samples, with nucleic acid extracted from saliva, nasopharyngeal and oropharyngeal swabs were selected for viral whole genome SARS-CoV-2 sequencing. Sequencing was performed using Illumina COVIDSeq™ protocol on either the NextSeq550 or NovaSeq6000 systems. Informatic variant calling, and lineage analysis were performed using DRAGEN COVID Lineage applications on Illumina's Basespace cloud analytical system. All sequence data and variant calls were uploaded to NCBI and GISAID. RESULTS: An association was observed between higher sequencing coverage, quality, and samples with a lower Ct value, with < 27 being optimal, across both sequencing platforms and sample collection methods. Both nasopharyngeal swabs and saliva samples were found to be optimal samples of choice for SARS-CoV-2 surveillance sequencing studies, both in terms of strain identification and sequencing depth of coverage, with NovaSeq 6000 providing higher coverage than the NextSeq 550. The most frequent variants identified were the B.1.617.2 Delta (India) and P.1 Gamma (Brazil) variants in the samples sequenced between April 2021 and June 2021. At the time of submission, the most common variant > 99% of positives sequenced was Omicron. CONCLUSION: These initial analyses highlight the importance of sequencing platform, sample collection methods, and RT-PCR Ct values in guiding surveillance efforts. These surveillance studies evaluating genetic changes of SARS-CoV-2 have been identified as critical by the CDC that can affect many aspects of public health including transmission, disease severity, diagnostics, therapeutics, and vaccines.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiología , COVID-19/prevención & control , Centers for Disease Control and Prevention, U.S. , Genómica , Humanos , SARS-CoV-2/genética , Estados Unidos/epidemiología
15.
Am J Hum Genet ; 109(4): 669-679, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35263625

RESUMEN

One mechanism by which genetic factors influence complex traits and diseases is altering gene expression. Direct measurement of gene expression in relevant tissues is rarely tenable; however, genetically regulated gene expression (GReX) can be estimated using prediction models derived from large multi-omic datasets. These approaches have led to the discovery of many gene-trait associations, but whether models derived from predominantly European ancestry (EA) reference panels can map novel associations in ancestrally diverse populations remains unclear. We applied PrediXcan to impute GReX in 51,520 ancestrally diverse Population Architecture using Genomics and Epidemiology (PAGE) participants (35% African American, 45% Hispanic/Latino, 10% Asian, and 7% Hawaiian) across 25 key cardiometabolic traits and relevant tissues to identify 102 novel associations. We then compared associations in PAGE to those in a random subset of 50,000 White British participants from UK Biobank (UKBB50k) for height and body mass index (BMI). We identified 517 associations across 47 tissues in PAGE but not UKBB50k, demonstrating the importance of diverse samples in identifying trait-associated GReX. We observed that variants used in PrediXcan models were either more or less differentiated across continental-level populations than matched-control variants depending on the specific population reflecting sampling bias. Additionally, variants from identified genes specific to either PAGE or UKBB50k analyses were more ancestrally differentiated than those in genes detected in both analyses, underlining the value of population-specific discoveries. This suggests that while EA-derived transcriptome imputation models can identify new associations in non-EA populations, models derived from closely matched reference panels may yield further insights. Our findings call for more diversity in reference datasets of tissue-specific gene expression.


Asunto(s)
Enfermedades Cardiovasculares , Estudio de Asociación del Genoma Completo , Predisposición Genética a la Enfermedad , Humanos , Estilo de Vida , Polimorfismo de Nucleótido Simple , Transcriptoma
16.
Genet Med ; 24(4): 784-797, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35148959

RESUMEN

PURPOSE: Mendelian disease genomic research has undergone a massive transformation over the past decade. With increasing availability of exome and genome sequencing, the role of Mendelian research has expanded beyond data collection, sequencing, and analysis to worldwide data sharing and collaboration. METHODS: Over the past 10 years, the National Institutes of Health-supported Centers for Mendelian Genomics (CMGs) have played a major role in this research and clinical evolution. RESULTS: We highlight the cumulative gene discoveries facilitated by the program, biomedical research leveraged by the approach, and the larger impact on the research community. Beyond generating a list of gene-phenotype relationships and participating in widespread data sharing, the CMGs have created resources, tools, and training for the larger community to foster understanding of genes and genome variation. The CMGs have participated in a wide range of data sharing activities, including deposition of all eligible CMG data into the Analysis, Visualization, and Informatics Lab-space (AnVIL), sharing candidate genes through the Matchmaker Exchange and the CMG website, and sharing variants in Genotypes to Mendelian Phenotypes (Geno2MP) and VariantMatcher. CONCLUSION: The work is far from complete; strengthening communication between research and clinical realms, continued development and sharing of knowledge and tools, and improving access to richly characterized data sets are all required to diagnose the remaining molecularly undiagnosed patients.


Asunto(s)
Exoma , Genómica , Estudios de Asociación Genética , Humanos , Fenotipo , Secuenciación del Exoma
17.
Diabetologia ; 65(3): 477-489, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34951656

RESUMEN

AIMS/HYPOTHESIS: Type 2 diabetes is a growing global public health challenge. Investigating quantitative traits, including fasting glucose, fasting insulin and HbA1c, that serve as early markers of type 2 diabetes progression may lead to a deeper understanding of the genetic aetiology of type 2 diabetes development. Previous genome-wide association studies (GWAS) have identified over 500 loci associated with type 2 diabetes, glycaemic traits and insulin-related traits. However, most of these findings were based only on populations of European ancestry. To address this research gap, we examined the genetic basis of fasting glucose, fasting insulin and HbA1c in participants of the diverse Population Architecture using Genomics and Epidemiology (PAGE) Study. METHODS: We conducted a GWAS of fasting glucose (n = 52,267), fasting insulin (n = 48,395) and HbA1c (n = 23,357) in participants without diabetes from the diverse PAGE Study (23% self-reported African American, 46% Hispanic/Latino, 40% European, 4% Asian, 3% Native Hawaiian, 0.8% Native American), performing transethnic and population-specific GWAS meta-analyses, followed by fine-mapping to identify and characterise novel loci and independent secondary signals in known loci. RESULTS: Four novel associations were identified (p < 5 × 10-9), including three loci associated with fasting insulin, and a novel, low-frequency African American-specific locus associated with fasting glucose. Additionally, seven secondary signals were identified, including novel independent secondary signals for fasting glucose at the known GCK locus and for fasting insulin at the known PPP1R3B locus in transethnic meta-analysis. CONCLUSIONS/INTERPRETATION: Our findings provide new insights into the genetic architecture of glycaemic traits and highlight the continued importance of conducting genetic studies in diverse populations. DATA AVAILABILITY: Full summary statistics from each of the population-specific and transethnic results are available at NHGRI-EBI GWAS catalog ( https://www.ebi.ac.uk/gwas/downloads/summary-statistics ).


Asunto(s)
Diabetes Mellitus Tipo 2 , Estudio de Asociación del Genoma Completo , Glucemia/genética , Diabetes Mellitus Tipo 2/genética , Estudio de Asociación del Genoma Completo/métodos , Genómica , Humanos , Polimorfismo de Nucleótido Simple/genética
18.
HGG Adv ; 2(2)2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-34604815

RESUMEN

Genomic discovery and characterization of risk loci for type 2 diabetes (T2D) have been conducted primarily in individuals of European ancestry. We conducted a multiethnic genome-wide association study of T2D among 53,102 cases and 193,679 control subjects from African, Hispanic, Asian, Native Hawaiian, and European population groups in the Population Architecture Genomics and Epidemiology (PAGE) and Diabetes Genetics Replication and Meta-analysis (DIAGRAM) Consortia. In individuals of African ancestry, we discovered a risk variant in the TGFB1 gene (rs11466334, risk allele frequency (RAF) = 6.8%, odds ratio [OR] = 1.27, p = 2.06 × 10-8), which replicated in independent studies of African ancestry (p = 6.26 × 10-23). We identified a multiethnic risk variant in the BACE2 gene (rs13052926, RAF = 14.1%, OR = 1.08, p = 5.75 × 10-9), which also replicated in independent studies (p = 3.45 × 10-4). We also observed a significant difference in the performance of a multiethnic genetic risk score (GRS) across population groups (pheterogeneity = 3.85 × 10-20). Comparing individuals in the top GRS risk category (40%-60%), the OR was highest in Asians (OR = 3.08) and European (OR = 2.94) ancestry populations, followed by Hispanic (OR = 2.39), Native Hawaiian (OR = 2.02), and African ancestry (OR = 1.57) populations. These findings underscore the importance of genetic discovery and risk characterization in diverse populations and the urgent need to further increase representation of non-European ancestry individuals in genetics research to improve genetic-based risk prediction across populations.

19.
Nature ; 583(7814): 83-89, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32460305

RESUMEN

A key goal of whole-genome sequencing for studies of human genetics is to interrogate all forms of variation, including single-nucleotide variants, small insertion or deletion (indel) variants and structural variants. However, tools and resources for the study of structural variants have lagged behind those for smaller variants. Here we used a scalable pipeline1 to map and characterize structural variants in 17,795 deeply sequenced human genomes. We publicly release site-frequency data to create the largest, to our knowledge, whole-genome-sequencing-based structural variant resource so far. On average, individuals carry 2.9 rare structural variants that alter coding regions; these variants affect the dosage or structure of 4.2 genes and account for 4.0-11.2% of rare high-impact coding alleles. Using a computational model, we estimate that structural variants account for 17.2% of rare alleles genome-wide, with predicted deleterious effects that are equivalent to loss-of-function coding alleles; approximately 90% of such structural variants are noncoding deletions (mean 19.1 per genome). We report 158,991 ultra-rare structural variants and show that 2% of individuals carry ultra-rare megabase-scale structural variants, nearly half of which are balanced or complex rearrangements. Finally, we infer the dosage sensitivity of genes and noncoding elements, and reveal trends that relate to element class and conservation. This work will help to guide the analysis and interpretation of structural variants in the era of whole-genome sequencing.


Asunto(s)
Variación Genética , Genoma Humano/genética , Secuenciación Completa del Genoma , Alelos , Estudios de Casos y Controles , Epigénesis Genética , Femenino , Dosificación de Gen/genética , Genética de Población , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Anotación de Secuencia Molecular , Sitios de Carácter Cuantitativo , Grupos Raciales/genética , Programas Informáticos
20.
PLoS Genet ; 16(3): e1008684, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32226016

RESUMEN

Lipid levels are important markers for the development of cardio-metabolic diseases. Although hundreds of associated loci have been identified through genetic association studies, the contribution of genetic factors to variation in lipids is not fully understood, particularly in U.S. minority groups. We performed genome-wide association analyses for four lipid traits in over 45,000 ancestrally diverse participants from the Population Architecture using Genomics and Epidemiology (PAGE) Study, followed by a meta-analysis with several European ancestry studies. We identified nine novel lipid loci, five of which showed evidence of replication in independent studies. Furthermore, we discovered one novel gene in a PrediXcan analysis, minority-specific independent signals at eight previously reported loci, and potential functional variants at two known loci through fine-mapping. Systematic examination of known lipid loci revealed smaller effect estimates in African American and Hispanic ancestry populations than those in Europeans, and better performance of polygenic risk scores based on minority-specific effect estimates. Our findings provide new insight into the genetic architecture of lipid traits and highlight the importance of conducting genetic studies in diverse populations in the era of precision medicine.


Asunto(s)
Lípidos/sangre , Lípidos/genética , Grupos Raciales/genética , Bases de Datos Genéticas , Femenino , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Humanos , Lípidos/análisis , Masculino , Metagenómica/métodos , Grupos Minoritarios , Herencia Multifactorial/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Estados Unidos/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA