Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38257286

RESUMEN

Cardiovascular diseases caused by blood coagulation system disorders are one of the leading causes of morbidity and mortality in the world. Research shows that blood clotting factors are involved in these thrombotic processes. Among them, factor Xa occupies a key position in the blood coagulation cascade. Another coagulation factor, XIa, is also a promising target because its inhibition can suppress thrombosis with a limited contribution to normal hemostasis. In this regard, the development of dual inhibitors as new generation anticoagulants is an urgent problem. Here we report the synthesis and evaluation of novel potential dual inhibitors of coagulation factors Xa and XIa. Based on the principles of molecular design, we selected a series of compounds that combine in their structure fragments of pyrrolo[3,2,1-ij]quinolin-2-one and thiazole, connected through a hydrazine linker. The production of new hybrid molecules was carried out using a two-stage method. The reaction of 5,6-dihydropyrrolo[3,2,1-ij]quinoline-1,2-diones with thiosemicarbazide gave the corresponding hydrazinocarbothioamides. The reaction of the latter with DMAD led to the target methyl 2-(4-oxo-2-(2-(2-oxo-5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinolin-1(2H)-ylidene)hydrazineyl)thiazol-5(4H)-ylidene)acetates in high yields. In vitro testing of the synthesized molecules revealed that ten of them showed high inhibition values for both the coagulation factors Xa and XIa, and the IC50 value for some compounds was also assessed. The resulting structures were also tested for their ability to inhibit thrombin.


Asunto(s)
Enfermedades Cardiovasculares , Factor Xa , Humanos , Trombina , Anticoagulantes/farmacología , Coagulación Sanguínea
2.
Blood Adv ; 6(16): 4834-4846, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35728058

RESUMEN

Blood flow is a major regulator of hemostasis and arterial thrombosis. The current view is that low and intermediate flows occur in intact healthy vessels, whereas high shear levels (>2000 s-1) are reached in stenosed arteries, notably during thrombosis. To date, the shear rates occurring at the edge of a lesion in an otherwise healthy vessel are nevertheless unknown. The aim of this work was to measure the shear rates prevailing in wounds in a context relevant to hemostasis. Three models of vessel puncture and transection were developed and characterized for a study that was implemented in mice and humans. Doppler probe measurements supplemented by a computational model revealed that shear rates at the edge of a wound reached high values, with medians of 22 000 s-1, 25 000 s-1, and 7000 s-1 after puncture of the murine carotid artery, aorta, or saphenous vein, respectively. Similar shear levels were observed after transection of the mouse spermatic artery. These results were confirmed in a human venous puncture model, where shear rates in a catheter implanted in the cubital vein reached 2000 to 27 000 s-1. In all models, the high shear conditions were accompanied by elevated levels of elongational flow exceeding 1000 s-1. In the puncture model, the shear rates decreased steeply with increasing injury size. This phenomenon could be explained by the low hydrodynamic resistance of the injuries as compared with that of the downstream vessel network. These findings show that high shear rates (>3000 s-1) are relevant to hemostasis and not exclusive to arterial thrombosis.


Asunto(s)
Hemostasis , Trombosis , Animales , Arterias/patología , Humanos , Ratones , Estrés Mecánico , Trombosis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...