Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neuropharmacology ; 240: 109713, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37689261

RESUMEN

2-(4-Bromo-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)etanoamine (25B-NBOMe) is a highly selective 5-HT2A receptor agonist, exhibiting a potent hallucinogenic activity. In the present study, we investigated the effect of a 7-day treatment with 25B-NBOMe in a dose of 0.3 mg/kg on the following: the neurotransmitter release in vivo using microdialysis in freely moving animals, hallucinogenic activity measured in the Wet Dog Shake (WDS) test, anxiety level as measured in the light/dark box (LDB) and locomotor activity in the open field (OF) test, DNA damage with the comet assay, and on a number of neuronal and glial cells with immunohistochemistry. Repeated administration of 25B-NBOMe decreased the response to a challenge dose (0.3 mg/kg) on DA, 5-HT and glutamatergic neurons in the rats' frontal cortex, striatum, and nucleus accumbens. The WDS response dropped drastically after the second day of treatment, suggesting a rapid development of tolerance. LDB and OF tests showed that the effect of 25B-NBOMe on anxiety depends on the treatment and environmental settings. Results obtained with the comet assay indicate a genotoxic properties in the frontal cortex and hippocampus. An increase in immunopositive glial but not neuronal cells was observed in the cortical regions but not in the hippocampus. In conclusion, our study showed that a chronic administration of 25B-NBOMe produces the development of tolerance observed in the neurotransmitters release and hallucinogenic activity. The oxidative damage of cortical and hippocampal DNA implies the generation of free radicals by the drug, resulting in genotoxicity but rather not in neurotoxic tissue damage. Behavioral tests show that 25B-NBOMe exerts anxiogenic effect after single and repeated treatment.

2.
Front Immunol ; 14: 1078031, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36776856

RESUMEN

Interactions between gingival fibroblasts (GFs) and oral pathogens contribute to the chronicity of inflammation in periodontitis. Epigenetic changes in DNA methylation are involved in periodontitis pathogenesis, and recent studies indicate that DNA methyltransferase (DNMT) inhibitors may protect against epithelial barrier disruption and bone resorption. To assess the impact of DNMT inhibition on GFs, cells were cultured with decitabine (5-aza-2'-deoxycytidine, DAC) for 12 days to induce DNA hypomethylation. We observed several potentially detrimental effects of DAC on GF biological functions. First, extended treatment with DAC reduced GF proliferation and induced necrotic cell death. Second, DAC amplified Porphyromonas gingivalis- and cytokine-induced expression and secretion of the chemokine CCL20 and several matrix metalloproteinases (MMPs), including MMP1, MMP9, and MMP13. Similar pro-inflammatory effects of DAC were observed in periodontal ligament fibroblasts. Third, DAC upregulated intercellular adhesion molecule-1 (ICAM-1), which was associated with increased P. gingivalis adherence to GFs and may contribute to bacterial dissemination. Finally, analysis of DAC-induced genes identified by RNA sequencing revealed increased expression of CCL20, CCL5, CCL8, CCL13, TNF, IL1A, IL18, IL33, and CSF3, and showed that the most affected processes were related to immune and inflammatory responses. In contrast, the genes downregulated by DAC were associated with extracellular matrix and collagen fibril organization. Our observations demonstrate that studies of DNMT inhibitors provide important insights into the role of DNA methylation in cells involved in periodontitis pathogenesis. However, the therapeutic potential of hypomethylating agents in periodontal disease may be limited due to their cytotoxic effects on fibroblast populations and stimulation of pro-inflammatory pathways.


Asunto(s)
Ligamento Periodontal , Periodontitis , Humanos , Ligamento Periodontal/metabolismo , Metilación de ADN , Células Cultivadas , Fibroblastos/metabolismo , Homeostasis , ADN/metabolismo
3.
Int J Mol Sci ; 25(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38203271

RESUMEN

The pathophysiology of depression is related to the reduced volume of the hippocampus and amygdala and hypertrophy of the nucleus accumbens. The mechanism of these changes is not well understood; however, clinical studies have shown that the administration of the fast-acting antidepressant ketamine reversed the decrease in hippocampus and amygdala volume in depressed patients, and the magnitude of this effect correlated with the reduction in depressive symptoms. In the present study, we attempted to find out whether the psychedelic substance psilocybin affects neurotransmission in the limbic system in comparison to ketamine. Psilocybin and ketamine increased the release of dopamine (DA) and serotonin (5-HT) in the nucleus accumbens of naive rats as demonstrated using microdialysis. Both drugs influenced glutamate and GABA release in the nucleus accumbens, hippocampus and amygdala and increased ACh levels in the hippocampus. The changes in D2, 5-HT1A and 5-HT2A receptor density in the nucleus accumbens and hippocampus were observed as a long-lasting effect. A marked anxiolytic effect of psilocybin in the acute phase and 24 h post-treatment was shown in the open field test. These data provide the neurobiological background for psilocybin's effect on stress, anxiety and structural changes in the limbic system and translate into the antidepressant effect of psilocybin in depressed patients.


Asunto(s)
Ketamina , Psilocibina , Humanos , Animales , Ratas , Psilocibina/farmacología , Ketamina/farmacología , Sistema Límbico , Ácido Glutámico , Antidepresivos/farmacología
4.
Int J Mol Sci ; 23(12)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35743159

RESUMEN

Clinical studies provide evidence that ketamine and psilocybin could be used as fast-acting antidepressants, though their mechanisms and toxicity are still not fully understood. To address this issue, we have examined the effect of a single administration of ketamine and psilocybin on the extracellular levels of neurotransmitters in the rat frontal cortex and reticular nucleus of the thalamus using microdialysis. The genotoxic effect and density of glutamate receptor proteins was measured with comet assay and Western blot, respectively. An open field test, light-dark box test and forced swim test were conducted to examine rat behavior 24 h after drug administration. Ketamine (10 mg/kg) and psilocybin (2 and 10 mg/kg) increased dopamine, serotonin, glutamate and GABA extracellular levels in the frontal cortex, while psilocybin also increased GABA in the reticular nucleus of the thalamus. Oxidative DNA damage due to psilocybin was observed in the frontal cortex and from both drugs in the hippocampus. NR2A subunit levels were increased after psilocybin (10 mg/kg). Behavioral tests showed no antidepressant or anxiolytic effects, and only ketamine suppressed rat locomotor activity. The observed changes in neurotransmission might lead to genotoxicity and increased NR2A levels, while not markedly affecting animal behavior.


Asunto(s)
Ketamina , Animales , Antidepresivos/farmacología , Conducta Animal , Encéfalo/metabolismo , ADN/farmacología , Ketamina/farmacología , Neurotransmisores/farmacología , Psilocibina/farmacología , Ratas , Receptores de Glutamato/metabolismo , Ácido gamma-Aminobutírico/metabolismo
5.
Sci Rep ; 12(1): 2939, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-35190675

RESUMEN

4-Iodo-2,5-dimethoxy-N-(2-methoxybenzyl)phenethylamine (25I-NBOMe) is a new psychoactive substance with strong hallucinogenic properties. Our previous data reported increased release of dopamine, serotonin, and glutamate after acute injections and a tolerance development in the neurotransmitters release and rats' behavior after chronic treatment with 25I-NBOMe. The recreational use of 25I-NBOMe is associated with severe intoxication and deaths in humans. There is no data about 25I-NBOMe in vivo toxicity towards the brain tissue. In this article 25I-NBOMe-crossing through the blood-brain barrier (BBB), the impact on DNA damage, apoptosis induction, and changes in the number of cortical and hippocampal cells were studied. The presence of 25I-NBOMe in several brain regions shortly after the drug administration and its accumulation after multiple injections was found. The DNA damage was detected 72 h after the chronic treatment. On the contrary, at the same time point apoptotic signal was not identified. A decrease in the number of glial but not in neural cells in the frontal (FC) and medial prefrontal cortex (mPFC) was observed. The obtained data indicate that 25I-NBOMe passes easily across the BBB and accumulates in the brain tissue. Observed oxidative DNA damage may lead to the glial cells' death.


Asunto(s)
Encéfalo/efectos de los fármacos , Dimetoxifeniletilamina/análogos & derivados , Alucinógenos/toxicidad , Animales , Apoptosis/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Daño del ADN/efectos de los fármacos , Dimetoxifeniletilamina/administración & dosificación , Dimetoxifeniletilamina/metabolismo , Dimetoxifeniletilamina/toxicidad , Dopamina/metabolismo , Ácido Glutámico/metabolismo , Humanos , Inyecciones , Neuroglía/patología , Estrés Oxidativo/efectos de los fármacos , Ratas , Serotonina/metabolismo
6.
Front Immunol ; 10: 933, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31114581

RESUMEN

BET bromodomain proteins are important epigenetic regulators of gene expression that bind acetylated histone tails and regulate the formation of acetylation-dependent chromatin complexes. BET inhibitors suppress inflammatory responses in multiple cell types and animal models, and protect against bone loss in experimental periodontitis in mice. Here, we analyzed the role of BET proteins in inflammatory activation of gingival fibroblasts (GFs) and gingival epithelial cells (GECs). We show that the BET inhibitors I-BET151 and JQ1 significantly reduced expression and/or production of distinct, but overlapping, profiles of cytokine-inducible mediators of inflammation and bone resorption in GFs from healthy donors (IL6, IL8, IL1B, CCL2, CCL5, COX2, and MMP3) and the GEC line TIGK (IL6, IL8, IL1B, CXCL10, MMP9) without affecting cell viability. Activation of mitogen-activated protein kinase and nuclear factor-κB pathways was unaffected by I-BET151, as was the histone acetylation status, and new protein synthesis was not required for the anti-inflammatory effects of BET inhibition. I-BET151 and JQ1 also suppressed expression of inflammatory cytokines, chemokines, and osteoclastogenic mediators in GFs and TIGKs infected with the key periodontal pathogen Porphyromonas gingivalis. Notably, P. gingivalis internalization and intracellular survival in GFs and TIGKs remained unaffected by BET inhibitors. Finally, inhibition of BET proteins significantly reduced P. gingivalis-induced inflammatory mediator expression in GECs and GFs from patients with periodontitis. Our results demonstrate that BET inhibitors may block the excessive inflammatory mediator production by resident cells of the gingival tissue and identify the BET family of epigenetic reader proteins as a potential therapeutic target in the treatment of periodontal disease.


Asunto(s)
Azepinas/farmacología , Células Epiteliales , Fibroblastos , Encía , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Periodontitis/tratamiento farmacológico , Porphyromonas gingivalis/inmunología , Triazoles/farmacología , Animales , Citocinas/inmunología , Células Epiteliales/inmunología , Células Epiteliales/microbiología , Células Epiteliales/patología , Quinasas MAP Reguladas por Señal Extracelular/inmunología , Fibroblastos/inmunología , Fibroblastos/microbiología , Fibroblastos/patología , Encía/inmunología , Encía/microbiología , Encía/patología , Humanos , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Inflamación/microbiología , Inflamación/patología , Ratones , Periodontitis/inmunología , Periodontitis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...