Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 12998, 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844535

RESUMEN

The challenge of in-situ handling and high-resolution low-dose imaging of intact, sensitive and wet samples in their native state at nanometer scale, including live samples is met by Advanced Environmental Scanning Electron Microscopy (A-ESEM). This new generation of ESEM utilises machine learning-based optimization of thermodynamic conditions with respect to sample specifics to employ a low temperature method and an ionization secondary electron detector with an electrostatic separator. A modified electron microscope was used, equipped with temperature, humidity and gas pressure sensors for in-situ and real-time monitoring of the sample. A transparent ultra-thin film of ionic liquid is used to increase thermal and electrical conductivity of the samples and to minimize sample damage by free radicals. To validate the power of the new method, we analyze condensed mitotic metaphase chromosomes to reveal new structural features of their perichromosomal layer, and the organization of chromatin fibers, not observed before by any microscopic technique. The ability to resolve nano-structural details of chromosomes using A-ESEM is validated by measuring gold nanoparticles with achievable resolution in the lower nanometre units.


Asunto(s)
Microscopía Electrónica de Rastreo , Microscopía Electrónica de Rastreo/métodos , Humanos , Oro/química , Nanopartículas del Metal/química , Mitosis , Cromosomas/ultraestructura
2.
Ecotoxicol Environ Saf ; 270: 115823, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38176180

RESUMEN

Two-dimensional materials have recently gained significant awareness. A representative of such materials, black phosphorous (BP), earned attention based on its comprehensive application potential. The presented study focuses on the mode of cellular response underlying the BP interaction with Chlamydomonas reinhardtii as an algal model organism. We observed noticeable ROS formation and changes in outer cellular topology after 72 h of incubation at 5 mg/L BP. Transcriptome profiling was employed to examine C. reinhardtii response after exposure to 25 mg/L BP for a deeper understanding of the associated processes. The RNA sequencing has revealed a comprehensive response with abundant transcript downregulation. The mode of action was attributed to cell wall disruption, ROS elevation, and chloroplast disturbance. Besides many other dysregulated genes, the cell response involved the downregulation of GH9 and gametolysin within a cell wall, pointing to a shift to discrete manipulation with resources. The response also included altered expression of the PRDA1 gene associated with redox governance in chloroplasts implying ROS disharmony. Altered expression of the Cre-miR906-3p, Cre-miR910, and Cre-miR914 pointed to those as potential markers in stress response studies.


Asunto(s)
Chlamydomonas reinhardtii , Chlamydomonas reinhardtii/metabolismo , Transcriptoma , Fósforo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Comprensión , Cloroplastos/genética , Cloroplastos/metabolismo
3.
J Hazard Mater ; 460: 132450, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37708651

RESUMEN

Over decades, synthetic dyes have become increasingly dominated by azo dyes posing a significant environmental risk due to their toxicity. Microalgae-based systems may offer an alternative for treatment of azo dye effluents to conventional physical-chemical methods. Here, microalgae were tested to decolorize industrial azo dye wastewater (ADW). Chlorella sorokiniana showed the highest decolorization efficiency in a preliminary screening test. Subsequently, the optimization of the experimental design resulted in 70% decolorization in a photobioreactor. Tolerance of this strain was evidenced using multiple approaches (growth and chlorophyll content assays, scanning electron microscopy (SEM), and antioxidant level measurements). Raman microspectroscopy was employed for the quantification of ADW-specific compounds accumulated by the microalgal biomass. Finally, RNA-seq revealed the transcriptome profile of C. sorokiniana exposed to ADW for 72 h. Activated DNA repair and primary metabolism provided sufficient energy for microalgal growth to overcome the adverse toxic conditions. Furthermore, several transporter genes, oxidoreductases-, and glycosyltransferases-encoding genes were upregulated to effectively sequestrate and detoxify the ADW. This work demonstrates the potential utilization of C. sorokiniana as a tolerant strain for industrial wastewater treatment, emphasizing the regulation of its molecular mechanisms to cope with unfavorable growth conditions.


Asunto(s)
Chlorella , Descoloración del Agua , Chlorella/genética , Perfilación de la Expresión Génica , Colorantes/toxicidad , Compuestos Azo
4.
Methods Mol Biol ; 2672: 177-200, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37335476

RESUMEN

Flow cytometry offers a unique way of analyzing and manipulating plant chromosomes. During a rapid movement in a liquid stream, large populations can be classified in a short time according to their fluorescence and light scatter properties. Chromosomes whose optical properties differ from other chromosomes in a karyotype can be purified by flow sorting and used in a range of applications in cytogenetics, molecular biology, genomics, and proteomics. As the samples for flow cytometry must be liquid suspensions of single particles, intact chromosomes must be released from mitotic cells. This protocol describes a procedure for preparation of suspensions of mitotic metaphase chromosomes from meristem root tips and their flow cytometric analysis and sorting for various downstream applications.


Asunto(s)
Cromosomas de las Plantas , Cromosomas , Citometría de Flujo/métodos , Suspensiones , Citogenética , Cariotipificación
5.
Methods Mol Biol ; 2672: 465-483, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37335494

RESUMEN

Optical mapping-a technique that visualizes short sequence motives along DNA molecules of hundred kilobases to megabase in size-has found an important place in genome research. It is widely used to facilitate genome sequence assemblies and analyses of genome structural variations. Application of the technique is conditional on availability of highly pure ultra-long high-molecular-weight DNA (uHMW DNA), which is challenging to achieve in plants due to the presence of the cell wall, chloroplasts, and secondary metabolites, just as a high content of polysaccharides and DNA nucleases in some species. These obstacles can be overcome by employment of flow cytometry, enabling a fast and highly efficient purification of cell nuclei or metaphase chromosomes, which are afterward embedded in agarose plugs and used to isolate the uHMW DNA in situ. Here, we provide a detailed protocol for the flow sorting-assisted uHMW DNA preparation that has been successfully used to construct whole-genome as well as chromosomal optical maps for 20 plant species from several plant families.


Asunto(s)
Cromosomas de las Plantas , Plantas , Cromosomas de las Plantas/genética , Mapeo Restrictivo , Plantas/genética , Análisis de Secuencia de ADN/métodos , Genoma de Planta , Citometría de Flujo/métodos
6.
Methods Mol Biol ; 2672: 485-500, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37335495

RESUMEN

Despite more than a century of intensive study of mitotic chromosomes, their three-dimensional organization remains enigmatic. The last decade established Hi-C as a method of choice for study of spatial genome-wide interactions. Although its utilization has been focused mainly on studying genomic interactions in interphase nuclei, the method can be also successfully applied to study 3D architecture and genome folding in mitotic chromosomes. However, obtaining sufficient number of mitotic chromosomes as an input material and effective coupling with Hi-C method is challenging in plant species. An elegant way to overcome hindrances with obtaining a pure mitotic chromosome fraction is their isolation via flow cytometric sorting. This chapter presents a protocol describing plant sample preparation for chromosome conformation studies, for flow-sorting of plant mitotic metaphase chromosomes and for the Hi-C procedure.


Asunto(s)
Cromatina , Cromosomas , Cromatina/genética , Cromosomas/genética , Núcleo Celular/genética , Genómica/métodos , Conformación Molecular , Plantas/genética
8.
NanoImpact ; 31: 100468, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37209721

RESUMEN

Graphene oxides (GOs) and their reduced forms are often discussed both positively and negatively due to the lack of information about their chemistry and structure. This study utilized GOs with two sheet sizes that were further reduced by two reducing agents (sodium borohydride and hydrazine) to obtain two different degrees of reduction. The synthesized nanomaterials were characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), elemental analysis (EA), Fourier transform infrared (FTIR) spectroscopy, and Raman spectroscopy (RA) to understand their chemistry and structure. The second focus of our investigation included in vitro testing of the biocompatibility/toxicity of these materials on a model organism, the freshwater microalga Chlamydomonas reinhardtii. The effects were studied on the basis of biological endpoints complemented by biomass investigation (FTIR spectroscopy, EA, and atomic absorption spectrometry (AAS)). The results showed that the biocompatibility/toxicity of GOs is dependent on their chemistry and structure and that it is impossible to generalize the toxicity of graphene-based nanomaterials.


Asunto(s)
Chlamydomonas reinhardtii , Grafito , Nanoestructuras , Óxidos/toxicidad , Grafito/toxicidad
9.
Environ Pollut ; 329: 121628, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37059171

RESUMEN

Microalgae and cyanobacteria are among the most important primary producers and are responsible for the production of 50-80% of the oxygen on Earth. They can be significantly affected by plastic pollution, as the vast majority of plastic waste ends up in rivers and then the oceans. This research focuses on green microalgae Chlorella vulgaris (C. vulgaris), Chlamydomonas reinhardtii (C. reinhardtii), filamentous cyanobacterium Limnospira (Arthrospira) maxima (L.(A.) maxima) and how they are affected by environmentally relevant PET-MPs (polyethylene-terephtalate microplastics). Manufactured PET-MPs have asymmetric shape, size between 3 and 7 µm and were used in concentrations ranging from 5 mg/L to 80 mg/L. The highest inhibitory rate of growth was found in C. reinhardtii (-24%). Concentration-dependent changes in chlorophyll a composition were found in C. vulgaris and C. reinhardtii, not in L. (A.) maxima. Furthermore, cell damage was detected in all three organisms by CRYO-SEM (shriveling, cell wall disruption), but the cyanobacterium was the least damaged. A PET-fingerprint was detected on the surface of all tested organisms using FTIR, indicating the adherence of PET-MPs. The highest rate of PET-MPs adsorption was detected in L. (A.) maxima. Specifically, characteristic spectra were observed at ∼721, 850, 1100, 1275, 1342, and 1715 cm-1 which are specific for functional groups of PET-MPs. Nitrogen and carbon content significantly increased in L. (A.) maxima under exposure to 80 mg/L due to the PET-MPs adherence and mechanical stress. In all three tested organisms, weak exposure-related ROS generation was detected. In general, cyanobacteria seem to be more resistant to the effects of MPs. However, organisms in the aquatic environment are exposed to MPs over a longer time scale, so it is important to use the present findings for further longer-term experiments on environmentally relevant organisms.


Asunto(s)
Chlorella vulgaris , Cianobacterias , Microalgas , Contaminantes Químicos del Agua , Microplásticos/toxicidad , Plásticos/toxicidad , Clorofila A , Agua Dulce , Contaminantes Químicos del Agua/análisis
10.
Nucleic Acids Res ; 51(6): 2641-2654, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36864547

RESUMEN

Chromatids of mitotic chromosomes were suggested to coil into a helix in early cytological studies and this assumption was recently supported by chromosome conformation capture (3C) sequencing. Still, direct differential visualization of a condensed chromatin fibre confirming the helical model was lacking. Here, we combined Hi-C analysis of purified metaphase chromosomes, biopolymer modelling and spatial structured illumination microscopy of large fluorescently labeled chromosome segments to reveal the chromonema - a helically-wound, 400 nm thick chromatin thread forming barley mitotic chromatids. Chromatin from adjacent turns of the helix intermingles due to the stochastic positioning of chromatin loops inside the chromonema. Helical turn size varies along chromosome length, correlating with chromatin density. Constraints on the observable dimensions of sister chromatid exchanges further supports the helical chromonema model.


Asunto(s)
Cromátides , Hordeum , Metafase , Cromátides/química , Cromatina/genética , Cromosomas , Microscopía , Intercambio de Cromátides Hermanas , Cromosomas de las Plantas , Hordeum/citología
11.
Aquat Toxicol ; 256: 106419, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36807021

RESUMEN

Recently, more accessible transcriptomic approaches have provided a new and deeper understanding of environmental toxicity. The present study focuses on the transcriptomic profiles of green microalgae Chlamydomonas reinhardtii exposed to new industrially promising material, TiO2 nanotubes (NTs), as an example of a widely used one-dimensional nanomaterial. The first algal in vitro assay included 2.5 and 7.5 mg/L TiO2 NTs, resulting in a dose-dependent negative effect on biological endpoints. At a working concentration of 7.5 mg/L, RNA-sequencing showed a mainly negative effect on the cells. In summary, the results indicated metabolic disruption, such as ATP loss, damage to mitochondria and chloroplasts, loss of solutes due to permeated membranes, and cell wall damage. Moreover, apoptosis-induced transcripts were detected. Interestingly, reactivation of transposons was observed. In signalling and transcription pathways, including chromatin remodelling and locking, the annotated genes were downregulated.


Asunto(s)
Chlamydomonas reinhardtii , Nanotubos , Contaminantes Químicos del Agua , Transcriptoma , Contaminantes Químicos del Agua/toxicidad
12.
J Adv Res ; 53: 75-85, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36632886

RESUMEN

INTRODUCTION: Meiotic recombination is one of the most important processes of evolution and adaptation to environmental conditions. Even though there is substantial knowledge about proteins involved in the process, targeting specific DNA loci by the recombination machinery is not well understood. OBJECTIVES: This study aims to investigate a wheat recombination hotspot (H1) in comparison with a "regular" recombination site (Rec7) on the sequence and epigenetic level in conditions with functional and non-functional Ph1 locus. METHODS: The DNA sequence, methylation pattern, and recombination frequency were analyzed for the H1 and Rec7 in three mapping populations derived by crossing introgressive wheat line 8.1 with cv. Chinese Spring (with Ph1 and ph1 alleles) and cv. Tähti. RESULTS: The H1 and Rec7 loci are 1.586 kb and 2.538 kb long, respectively. High-density mapping allowed to delimit the Rec7 and H1 to 19 and 574 bp and 593 and 571 bp CO sites, respectively. A new method (ddPing) allowed screening recombination frequency in almost 66 thousand gametes. The screening revealed a 5.94-fold higher recombination frequency at the H1 compared to the Rec7. The H1 was also found out of the Ph1 control, similarly as gamete distortion. The recombination was strongly affected by larger genomic rearrangements but not by the SNP proximity. Moreover, chromatin markers for open chromatin and DNA hypomethylation were found associated with crossover occurrence except for the CHH methylation. CONCLUSION: Our results, for the first time, allowed study of wheat recombination directly on sequence, shed new light on chromatin landmarks associated with particular recombination sites, and deepened knowledge about role of the Ph1 locus in control of wheat recombination processes. The results are suggesting more than one recombination control pathway. Understanding this phenomenon may become a base for more efficient wheat genome manipulation, gene pool enrichment, breeding, and study processes of recombination itself.


Asunto(s)
Cromatina , Triticum , Cromatina/genética , Triticum/genética , Fitomejoramiento , Cromosomas , ADN
13.
Front Plant Sci ; 13: 1017958, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36262648

RESUMEN

Breeding of wheat adapted to new climatic conditions and resistant to diseases and pests is hindered by a limited gene pool due to domestication and thousands of years of human selection. Annual goatgrasses (Aegilops spp.) with M and U genomes are potential sources of the missing genes and alleles. Development of alien introgression lines of wheat may be facilitated by the knowledge of DNA sequences of Aegilops chromosomes. As the Aegilops genomes are complex, sequencing relevant Aegilops chromosomes purified by flow cytometric sorting offers an attractive route forward. The present study extends the potential of chromosome genomics to allotetraploid Ae. biuncialis and Ae. geniculata by dissecting their M and U genomes into individual chromosomes. Hybridization of FITC-conjugated GAA oligonucleotide probe to chromosomes suspensions of the two species allowed the application of bivariate flow karyotyping and sorting some individual chromosomes. Bivariate flow karyotype FITC vs. DAPI of Ae. biuncialis consisted of nine chromosome-populations, but their chromosome content determined by microscopic analysis of flow sorted chromosomes indicated that only 7Mb and 1Ub could be sorted at high purity. In the case of Ae. geniculata, fourteen chromosome-populations were discriminated, allowing the separation of nine individual chromosomes (1Mg, 3Mg, 5Mg, 6Mg, 7Mg, 1Ug, 3Ug, 6Ug, and 7Ug) out of the 14. To sort the remaining chromosomes, a partial set of wheat-Ae. biuncialis and a whole set of wheat-Ae. geniculata chromosome addition lines were also flow karyotyped, revealing clear separation of the GAA-rich Aegilops chromosomes from the GAA-poor A- and D-genome chromosomes of wheat. All of the alien chromosomes represented by individual addition lines could be isolated at purities ranging from 74.5% to 96.6% and from 87.8% to 97.7%, respectively. Differences in flow karyotypes between Ae. biuncialis and Ae. geniculata were analyzed and discussed. Chromosome-specific genomic resources will facilitate gene cloning and the development of molecular tools to support alien introgression breeding of wheat.

14.
Theor Appl Genet ; 135(10): 3629-3642, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36038638

RESUMEN

KEY MESSAGE: The novel wheat powdery mildew and stripe rust resistance genes Pm5V/Yr5V are introgressed from Dasypyrum villosum and fine mapped to a narrowed region in 5VS, and their effects on yield-related traits were characterized. The powdery mildew and stripe rust seriously threaten wheat production worldwide. Dasypyrum villosum (2n = 2x = 14, VV), a relative of wheat, is a valuable resource of resistance genes for wheat improvement. Here, we describe a platform for rapid introgression of the resistance genes from D. villosum into the wheat D genome. A complete set of new wheat-D. villosum V (D) disomic substitution lines and 11 D/V Robertsonian translocation lines are developed and characterized by molecular cytogenetic method. A new T5DL·5V#5S line NAU1908 shows resistance to both powdery mildew and stripe rust, and the resistances associated with 5VS are confirmed to be conferred by seedling resistance gene Pm5V and adult-plant resistance gene Yr5V, respectively. We flow-sort chromosome arm 5VS and sequence it using the Illumina NovaSeq 6000 system that allows us to generate 5VS-specific markers for genetic mapping of Pm5V/Yr5V. Fine mapping shows that Pm5V and Yr5V are closely linked and the location is narrowed to an approximately 0.9 Mb region referencing the sequence of Chinese Spring 5DS. In this region, a NLR gene in scaffold 24,874 of 5VS orthologous to TraesCS5D02G044300 is the most likely candidate gene for Pm5V. Soft- and hard-grained T5DL·5V#5S introgressions confer resistance to both powdery mildew and stripe rust in diverse wheat genetic backgrounds without yield penalty. Meanwhile, significant decrease in plant height and increase in yield were observed in NIL-5DL·5V#5S compared with that in NIL-5DL·5DS. These results indicate that Pm5V/Yr5V lines might have the potential value to facilitate wheat breeding for disease resistance.


Asunto(s)
Basidiomycota , Triticum , Resistencia a la Enfermedad/genética , Fitomejoramiento , Enfermedades de las Plantas/genética , Poaceae/genética , Triticum/genética
15.
Front Plant Sci ; 13: 897697, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646009

RESUMEN

Powdery mildew is one of the most devastating diseases of wheat which significantly decreases yield and quality. Identification of new sources of resistance and their implementation in breeding programs is the most effective way of disease control. Two major powdery mildew resistance loci conferring resistance to all races in seedling and adult plant stages were identified in the emmer wheat landrace GZ1. Their positions, effects, and transferability were verified using two linkage maps (1,510 codominant SNP markers) constructed from two mapping populations (276 lines in total) based on the resistant GZ1 line. The dominant resistance locus QPm.GZ1-7A was located in a 90 cM interval of chromosome 7AL and explains up to 20% of the trait variation. The recessive locus QPm.GZ1-2A, which provides total resistance, explains up to 40% of the trait variation and was located in the distal part of chromosome 2AL. The locus was saturated with 14 PCR-based markers and delimited to a 0.99 cM region which corresponds to 4.3 Mb of the cv. Zavitan reference genome and comprises 55 predicted genes with no apparent candidate for the QPm.GZ1-2A resistance gene. No recessive resistance gene or allele was located at the locus before, suggesting the presence of a new powdery mildew resistance gene in the GZ1. The mapping data and markers could be used for the implementation of the locus in breeding. Moreover, they are an ideal base for cloning and study of host-pathogen interaction pathways determined by the resistance genes.

16.
Front Plant Sci ; 13: 875676, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35769292

RESUMEN

Effective utilization of genetic diversity in wild relatives to improve wheat requires recombination between wheat and alien chromosomes. However, this is suppressed by the Pairing homoeologous gene, Ph1, on the long arm of wheat chromosome 5B. A deletion mutant of the Ph1 locus (ph1b) has been used widely to induce homoeologous recombination in wheat × alien hybrids. However, the original ph1b mutation, developed in Chinese Spring (CS) background has poor agronomic performance. Hence, alien introgression lines are first backcrossed with adapted wheat genotypes and after this step, alien chromosome segments are introduced into breeding lines. In this work, the ph1b mutation was transferred from two CSph1b mutants into winter wheat line Mv9kr1. Homozygous genotypes Mv9kr1 ph1b/ph1b exhibited improved plant and spike morphology compared to Chinese Spring. Flow cytometric chromosome analysis confirmed reduced DNA content of the mutant 5B chromosome in both wheat genotype relative to the wild type chromosome. The ph1b mutation in the Mv9kr1 genotype allowed wheat-alien chromosome pairing in meiosis of Mv9kr1ph1b_K × Aegilops biuncialis F1 hybrids, predominantly with the Mb-genome chromosomes of Aegilops relative to those of the Ub genome. High frequency of wheat-Aegilops chromosome interactions resulted in rearranged chromosomes identified in the new Mv9kr1ph1b × Ae. Biuncialis amphiploids, making these lines valuable sources for alien introgressions. The new Mv9kr1ph1b mutant genotype is a unique resource to support alien introgression breeding of hexaploid wheat.

17.
New Phytol ; 235(3): 1246-1259, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35460285

RESUMEN

During our initial phylogenetic study of the monocot genus Erythronium (Liliaceae), we observed peculiar eudicot-type internal transcribed spacer (ITS) sequences in a dataset derived from genomic DNA of Erythronium dens-canis. This raised the possibility of horizontal transfer of a eudicot alien ribosomal DNA (rDNA) into the Erythronium genome. In this work we aimed to support this hypothesis by carrying out genomic, molecular, and cytogenetic analyses. Genome skimming coupled by PacBio HiFi sequencing of a bacterial artificial chromosome clone derived from flow-sorted nuclei was used to characterise the alien 45S rDNA. Integration of alien rDNA in the recipient genome was further proved by Southern blotting and fluorescence in situ hybridization using specific probes. Alien rDNA, nested among Potentilla species in phylogenetic analysis, likely entered the Erythronium lineage in the common ancestor of E. dens-canis and E. caucasicum. Transferred eudicot-type rDNA preserved its tandemly arrayed feature on a single chromosome and was found to be transcribed in the monocot host, albeit much less efficiently than the native counterpart. This study adds a new example to the rarely documented nuclear-to-nuclear jumps of DNA between eudicots and monocots while holding the scientific community continually in suspense about the mode of DNA transfer.


Asunto(s)
Liliaceae , Potentilla , ADN Ribosómico/genética , ADN Espaciador Ribosómico/genética , Hibridación Fluorescente in Situ , Filogenia , Potentilla/genética
18.
Int J Mol Sci ; 23(7)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35409181

RESUMEN

Grain dietary fiber content is an important health-promoting trait of bread wheat. A dominant dietary fiber component of wheat is the cell wall polysaccharide arabinoxylan and the goatgrass Aegilops biuncialis has high ß-glucan content, which makes it an attractive gene source to develop wheat lines with modified fiber composition. In order to support introgression breeding, this work examined genetic variability in grain ß-glucan, pentosan, and protein content in a collection of Ae. biuncialis. A large variation in grain protein and edible fiber content was revealed, reflecting the origin of Ae. biuncialis accessions from different eco-geographical habitats. Association analysis using DArTseq-derived SNPs identified 34 QTLs associated with ß-glucan, pentosan, water-extractable pentosan, and protein content. Mapping the markers to draft chromosome assemblies of diploid progenitors of Ae. biuncialis underlined the role of genes on chromosomes 1Mb, 4Mb, and 5Mb in the formation of grain ß-glucan content, while other QTLs on chromosome groups 3, 6, and 1 identified genes responsible for total- and water-extractable pentosan content. Functional annotation of the associated marker sequences identified fourteen genes, nine of which were identified in other monocots. The QTLs and genes identified in the present work are attractive targets for chromosome-mediated gene transfer to improve the health-promoting properties of wheat-derived foods.


Asunto(s)
Aegilops , beta-Glucanos , Aegilops/genética , Fibras de la Dieta , Genes de Plantas , Fitomejoramiento , Sitios de Carácter Cuantitativo , Triticum/genética , Agua
19.
Int J Mol Sci ; 23(6)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35328613

RESUMEN

Crested wheatgrass (Agropyron cristatum), a wild relative of wheat, is an attractive source of genes and alleles for their improvement. Its wider use is hampered by limited knowledge of its complex genome. In this work, individual chromosomes were purified by flow sorting, and DNA shotgun sequencing was performed. The annotation of chromosome-specific sequences characterized the DNA-repeat content and led to the identification of genic sequences. Among them, genic sequences homologous to genes conferring plant disease resistance and involved in plant tolerance to biotic and abiotic stress were identified. Genes belonging to the important groups for breeders involved in different functional categories were found. The analysis of the DNA-repeat content identified a new LTR element, Agrocen, which is enriched in centromeric regions. The colocalization of the element with the centromeric histone H3 variant CENH3 suggested its functional role in the grass centromere. Finally, 159 polymorphic simple-sequence-repeat (SSR) markers were identified, with 72 of them being chromosome- or chromosome-arm-specific, 16 mapping to more than one chromosome, and 71 mapping to all the Agropyron chromosomes. The markers were used to characterize orthologous relationships between A. cristatum and common wheat that will facilitate the introgression breeding of wheat using A. cristatum.


Asunto(s)
Agropyron , Agropyron/genética , Cromosomas de las Plantas/genética , Resistencia a la Enfermedad/genética , Fitomejoramiento , Triticum/genética
20.
Int J Mol Sci ; 22(22)2021 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-34830166

RESUMEN

The VERNALIZATION1 (VRN1) gene encodes a MADS-box transcription factor and plays an important role in the cold-induced transition from the vegetative to reproductive stage. Allelic variability of VRN1 homoeologs has been associated with large differences in flowering time. The aim of this study was to investigate the genetic variability of VRN1 homoeologs (VRN-A1, VRN-B1 and VRN-D1). We performed an in-depth sequence analysis of VRN1 homoeologs in a panel of 105 winter and spring varieties of hexaploid wheat. We describe the novel allele Vrn-B1f with an 836 bp insertion within intron 1 and show its specific expression pattern associated with reduced heading time. We further provide the complete sequence of the Vrn-A1b allele, revealing a 177 bp insertion in intron 1, which is transcribed into an alternative splice variant. Copy number variation (CNV) analysis of VRN1 homoeologs showed that VRN-B1 and VRN-D1 are present in only one copy. The copy number of recessive vrn-A1 ranged from one to four, while that of dominant Vrn-A1 was one or two. Different numbers of Vrn-A1a copies in the spring cultivars Branisovicka IX/49 and Bastion did not significantly affect heading time. We also report on the deletion of secondary structures (G-quadruplex) in promoter sequences of cultivars with more vrn-A1 copies.


Asunto(s)
Alelos , Dosificación de Gen , Variación Genética , Poliploidía , Proteínas Represoras/genética , Triticum/genética , Empalme Alternativo , Pan , Mutagénesis Insercional , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA