Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38730559

RESUMEN

The gut microbiota of vertebrates is acquired from the environment and other individuals, including parents and unrelated conspecifics. In the laboratory mouse, a key animal model, inter-individual interactions are severely limited and its gut microbiota is abnormal. Surprisingly, our understanding of how inter-individual transmission impacts house mouse gut microbiota is solely derived from laboratory experiments. We investigated the effects of inter-individual transmission on gut microbiota in two subspecies of house mice (Mus musculus musculus and M. m. domesticus) raised in a semi-natural environment without social or mating restrictions. We assessed the correlation between microbiota composition (16S rRNA profiles), social contact intensity (microtransponder-based social networks), and mouse relatedness (microsatellite-based pedigrees). Inter-individual transmission had a greater impact on the lower gut (colon and cecum) than on the small intestine (ileum). In the lower gut, relatedness and social contact independently influenced microbiota similarity. Despite female-biased parental care, both parents exerted a similar influence on their offspring's microbiota, diminishing with the offspring's age in adulthood. Inter-individual transmission was more pronounced in M. m. domesticus, a subspecies, with a social and reproductive network divided into more closed modules. This suggests that the transmission magnitude depends on the social and genetic structure of the studied population.


Asunto(s)
Microbioma Gastrointestinal , ARN Ribosómico 16S , Animales , Microbioma Gastrointestinal/genética , Ratones , Femenino , ARN Ribosómico 16S/genética , Masculino , Repeticiones de Microsatélite , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación
2.
Mol Ecol ; 33(1): e17192, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37933543

RESUMEN

The question of how interactions between the gut microbiome and vertebrate hosts contribute to host adaptation and speciation is one of the major problems in current evolutionary research. Using bacteriome and mycobiome metabarcoding, we examined how these two components of the gut microbiota vary with the degree of host admixture in secondary contact between two house mouse subspecies (Mus musculus musculus and M. m. domesticus). We used a large data set collected at two replicates of the hybrid zone and model-based statistical analyses to ensure the robustness of our results. Assuming that the microbiota of wild hosts suffers from spatial autocorrelation, we directly compared the results of statistical models that were spatially naive with those that accounted for spatial autocorrelation. We showed that neglecting spatial autocorrelation can strongly affect the results and lead to misleading conclusions. The spatial analyses showed little difference between subspecies, both in microbiome composition and in individual bacterial lineages. Similarly, the degree of admixture had minimal effects on the gut bacteriome and mycobiome and was caused by changes in a few microbial lineages that correspond to the common symbionts of free-living house mice. In contrast to previous studies, these data do not support the hypothesis that the microbiota plays an important role in host reproductive isolation in this particular model system.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Ratones , Animales , Microbioma Gastrointestinal/genética , Evolución Biológica , Aislamiento Reproductivo
3.
Mol Phylogenet Evol ; 180: 107708, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36657626

RESUMEN

Crocidura (Eulipotyphla, Soricidae) is the most species-rich genus among mammals, with high cryptic diversity and complicated taxonomy. The hirta-flavescens group of Crocidura represents the most abundant and widespread shrews in savannahs of eastern and southern Africa, making them a suitable phylogeographical model for assessing the role of paleoclimatic changes on current biodiversity in open African habitats. We present the first comprehensive study on the phylogeography, evolutionary history, geographical distribution, systematics, and taxonomy of the group, using the integration of mitochondrial, genome-wide (ddRAD sequencing), morphological and morphometrical data collected from specimens over most of the known geographic distribution. Our genomic data confirmed the monophyly of this group and its sister relationship with the olivieri group of Crocidura. There is a substantial genetic variation within the hirta-flavescens group, with three highly supported clades showing parapatric distribution and which can be distinguished morphologically: C. hirta, distributed in both the Zambezian and Somali-Masai bioregions, C. flavescens, known from South Africa and south-western Zambia, and C. cf. flavescens, which is known to occur only in central and western Tanzania. Morphometric data revealed relatively minor differences between C. hirta and C. cf. flavescens, but they differ in the colouration of the pelage. Diversification of the hirta-flavescens group has most likely happened during phases of grassland expansion and contraction during Plio-Pleistocene climatic cycles. Eastern African Rift system, rivers, and the distinctiveness of Zambezian and Somali-Masai bioregions seem to have also shaped the pattern of their diversity, which is very similar to sympatric rodent species living in open habitats. Finally, we review the group's taxonomy and propose to revalidate C. bloyeti, currently a synonym of C. hirta, including the specimens treated as C. cf. flavescens.


Asunto(s)
Evolución Biológica , Musarañas , Animales , Filogenia , Musarañas/genética , Filogeografía , África Austral
4.
Virus Evol ; 8(2): veac065, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36533140

RESUMEN

Mammarenaviruses are bi-segmented RNA viruses. They encompass viruses responsible for several severe diseases in humans. While performing a de novo assembly of a new virus found in a wild single-striped grass mouse in Tanzania, we found a single S but two divergent L segments. Natural co-infections, common within reptarenaviruses in captivity, were never reported for mammarenaviruses and never in a wild sample. This finding can have implications for virus evolution as co-infection could trigger viral recombination/reassortment in natural reservoirs.

5.
FEMS Microbiol Ecol ; 98(8)2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35767862

RESUMEN

The gastrointestinal microbiota (GM) is considered an important component of the vertebrate holobiont. GM-host interactions influence the fitness of holobionts and are, therefore, an integral part of evolution. The house mouse is a prominent model for GM-host interactions, and evidence suggests a role for GM in mouse speciation. However, previous studies based on short 16S rRNA GM profiles of wild house mouse subspecies failed to detect GM divergence, which is a prerequisite for the inclusion of GM in Dobzhansky-Muller incompatibilities. Here, we used standard 16S rRNA GM profiling in two mouse subspecies, Mus musculus musculus and M. m. domesticus, including the intestinal mucosa and content of three gut sections (ileum, caecum, and colon). We reduced environmental variability by sampling GM in the offspring of wild mice bred under seminatural conditions. Although the breeding conditions allowed a contact between the subspecies, we found a clear differentiation of GM between them, in all three gut sections. Differentiation was mainly driven by several Helicobacters and two H. ganmani variants showed a signal of codivergence with their hosts. Helicobacters represent promising candidates for studying GM-host coadaptations and the fitness effects of their interactions.


Asunto(s)
Microbioma Gastrointestinal , Animales , Interacciones Microbiota-Huesped , Ratones , ARN Ribosómico 16S/genética
6.
Immunogenetics ; 74(5): 497-505, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35015128

RESUMEN

Polymorphism of the major histocompatibility complex (MHC), DAB1 gene was characterized for the first time in the European bitterling (Rhodeus amarus), a freshwater fish employed in studies of host-parasite coevolution and mate choice, taking advantage of newly designed primers coupled with high-throughput amplicon sequencing. Across 221 genotyped individuals, we detected 1-4 variants per fish, with 28% individuals possessing 3-4 variants. We identified 36 DAB1 variants, and they showed high sequence diversity mostly located within predicted antigen-binding sites, and both global and codon-specific excess of non-synonymous mutations. Despite deep divergence between two major allelic lineages, functional diversity was surprisingly low (3 supertypes). Overall, these findings suggest the role of positive and balancing selection in promotion and long-time maintenance of DAB1 polymorphism. Further investigations will clarify the role of pathogen-mediated selection to drive the evolution of DAB1 variation.


Asunto(s)
Cyprinidae , Variaciones en el Número de Copia de ADN , Alelos , Animales , Cyprinidae/genética , Cyprinidae/parasitología , Evolución Molecular , Genes MHC Clase II , Variación Genética , Complejo Mayor de Histocompatibilidad , Filogenia , Selección Genética
7.
G3 (Bethesda) ; 11(12)2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34849761

RESUMEN

Genomic analysis of hybrid zones offers unique insights into emerging reproductive isolation and the dynamics of introgression. Because hybrid genomes consist of blocks inherited from one or the other parental taxon, linkage information is essential. In most cases, the spectrum of local ancestry tracts can be efficiently uncovered from dense linkage maps. Here, we report the development of such a map for the hybridizing toads, Bombina bombina and Bombina variegata (Anura: Bombinatoridae). Faced with the challenge of a large (7-10 Gb), repetitive genome, we set out to identify a large number of Mendelian markers in the nonrepetitive portion of the genome that report B. bombina vs B. variegata ancestry with appropriately quantified statistical support. Bait sequences for targeted enrichment were selected from a draft genome assembly, after filtering highly repetitive sequences. We developed a novel approach to infer the most likely diplotype per sample and locus from the raw read mapping data, which is robust to over-merging and obviates arbitrary filtering thresholds. Validation of the resulting map with 4755 markers underscored the large-scale synteny between Bombina and Xenopus tropicalis. By assessing the sex of late-stage F2 tadpoles from histological sections, we identified the sex-determining region in the Bombina genome to 7 cM on LG5, which is homologous to X. tropicalis chromosome 5, and inferred male heterogamety. Interestingly, chromosome 5 has been repeatedly recruited as a sex chromosome in anurans with XY sex determination.


Asunto(s)
Anuros , Genoma , Animales , Anuros/genética , Mapeo Cromosómico , Ligamiento Genético , Larva , Masculino
8.
Heredity (Edinb) ; 127(2): 141-150, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34045683

RESUMEN

Data on the gut microbiota (GM) of wild animals are key to studies on evolutionary biology (host-GM interactions under natural selection), ecology and conservation biology (GM as a fitness component closely connected to the environment). Wildlife GM sampling often requires non-invasive techniques or sampling from dead animals. In a controlled experiment profiling microbial 16S rRNA in 52 house mice (Mus musculus) from eight families and four genetic backgrounds, we studied the effects of live- and snap-trapping on small mammal GM and evaluated the suitability of microbiota from non-fresh faeces as a proxy for caecal GM. We compared CM from individuals sampled 16-18 h after death with those in live traps and caged controls, and caecal and faecal GM collected from mice in live-traps. Sampling delay did not affect GM composition, validating data from fresh cadavers or snap-trapped animals. Animals trapped overnight displayed a slight but significant difference in GM composition to the caged controls, though the change only had negligible effect on GM diversity, composition and inter-individual divergence. Hence, the trapping process appears not to bias GM profiling. Despite their significant difference, caecal and faecal microbiota were correlated in composition and, to a lesser extent, diversity. Both showed congruent patterns of inter-individual divergence following the natural structure of the dataset. Thus, the faecal microbiome represents a good non-invasive proxy of the caecal microbiome, making it suitable for detecting biologically relevant patterns. However, care should be taken when analysing mixed datasets containing both faecal and caecal samples.


Asunto(s)
Microbioma Gastrointestinal , Animales , Ciego , Heces , Mamíferos , Ratones , ARN Ribosómico 16S/genética
9.
J Immunol ; 206(9): 2109-2121, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33858960

RESUMEN

Ag-inexperienced memory-like T (AIMT) cells are functionally unique T cells, representing one of the two largest subsets of murine CD8+ T cells. However, differences between laboratory inbred strains, insufficient data from germ-free mice, a complete lack of data from feral mice, and an unclear relationship between AIMT cells formation during aging represent major barriers for better understanding of their biology. We performed a thorough characterization of AIMT cells from mice of different genetic background, age, and hygienic status by flow cytometry and multiomics approaches, including analyses of gene expression, TCR repertoire, and microbial colonization. Our data showed that AIMT cells are steadily present in mice, independent of their genetic background and hygienic status. Despite differences in their gene expression profiles, young and aged AIMT cells originate from identical clones. We identified that CD122 discriminates two major subsets of AIMT cells in a strain-independent manner. Whereas thymic CD122LOW AIMT cells (innate memory) prevail only in young animals with high thymic IL-4 production, peripheral CD122HIGH AIMT cells (virtual memory) dominate in aged mice. Cohousing with feral mice changed the bacterial colonization of laboratory strains but had only minimal effects on the CD8+ T cell compartment, including AIMT cells.


Asunto(s)
Envejecimiento/genética , Antígenos/genética , Memoria Inmunológica/genética , Linfocitos T/inmunología , Envejecimiento/inmunología , Animales , Antígenos/inmunología , Evolución Clonal , Inestabilidad Genómica , Memoria Inmunológica/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenotipo
10.
Mol Ecol ; 30(10): 2349-2365, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33738874

RESUMEN

The Ethiopian highlands represent a remarkable biodiversity 'hot spot' with a very high number of endemic species, even among vertebrates. Ethiopian representatives of a species complex of speckled brush-furred rats (Lophuromys flavopunctatus sensu lato) inhabit highland habitats ranging from low-elevation forests to Afroalpine grasslands. These may serve as a suitable model for understanding evolutionary processes leading to high genetic and ecological diversity in montane biodiversity hot spots. Here, we analyse the most comprehensive genetic data set of this group, comprising 315 specimens (all nine putative Ethiopian Lophuromys taxa sampled across most of their distribution ranges) genotyped at one mitochondrial and four nuclear markers, and thousands of SNPs from ddRAD sequencing. We performed phylogenetic analyses, delimited species and mapped their distribution and estimated divergence time between species (under the species-tree framework) and mitochondrial lineages. We found significant incongruence between mitochondrial and nuclear phylogenies, most probably caused by multiple interspecific introgression events. We discuss alternative scenarios of Ethiopian Lophuromys evolution, from retention of ancestral polymorphism to hybridization upon secondary contact of partially reproductively isolated lineages leading to reticulate evolution. Finally, we use the diversity of the speckled brush-furred rats for the description of the main biogeographic patterns in the fauna of the Ethiopian highlands.


Asunto(s)
Biodiversidad , Evolución Biológica , Murinae , Animales , ADN Mitocondrial/genética , Ecosistema , Etiopía , Filogenia
11.
BMC Microbiol ; 20(1): 194, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32631223

RESUMEN

BACKGROUND: The vertebrate gastrointestinal tract is colonised by microbiota that have a major effect on the host's health, physiology and phenotype. Once introduced into captivity, however, the gut microbial composition of free-living individuals can change dramatically. At present, little is known about gut microbial changes associated with adaptation to a synanthropic lifestyle in commensal species, compared with their non-commensal counterparts. Here, we compare the taxonomic composition and diversity of bacterial and fungal communities across three gut sections in synanthropic house mouse (Mus musculus) and a closely related non-synanthropic mound-building mouse (Mus spicilegus). RESULTS: Using Illumina sequencing of bacterial 16S rRNA amplicons, we found higher bacterial diversity in M. spicilegus and detected 11 bacterial operational taxonomic units with significantly different proportions. Notably, abundance of Oscillospira, which is typically higher in lean or outdoor pasturing animals, was more abundant in non-commensal M. spicilegus. ITS2-based barcoding revealed low diversity and high uniformity of gut fungi in both species, with the genus Kazachstania clearly dominant. CONCLUSIONS: Though differences in gut bacteria observed in the two species can be associated with their close association with humans, changes due to a move from commensalism to captivity would appear to have caused larger shifts in microbiota.


Asunto(s)
Bacterias/clasificación , Hongos/clasificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN/métodos , Animales , Bacterias/genética , Bacterias/aislamiento & purificación , ADN Ribosómico/genética , Ecología , Heces/microbiología , Hongos/genética , Hongos/aislamiento & purificación , Secuenciación de Nucleótidos de Alto Rendimiento , Ratones , Microbiota , Micobioma , Filogenia
12.
Mol Ecol ; 28(21): 4786-4797, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31573713

RESUMEN

The close phylogenetic relationship between humans and nonhuman primates (NHPs) can result in a high potential for pathogen exchange. In recent decades, NHP and human interactions have become more frequent due to increasing habitat encroachment and ecotourism. Strongylid communities, which include members of several genera, are typically found in NHPs. Using optimized high-throughput sequencing for strain-level identification of primate strongylids, we studied the structure of strongylid communities in NHPs and humans co-habiting a tropical forest ecosystem in the Central African Republic. General taxonomic assignment of 85 ITS-2 haplotypes indicated that the studied primates harbour at least nine genera of strongylid nematodes, with Oesophagostomum and Necator being the most prevalent. We detected both host-specific and shared strongylid haplotypes. Skin-penetrating Necator gorillaehaplotypes were shared between humans and gorillas but Necator americanus were much more restricted to humans. Strongylid communities of local hunter-gatherers employed as trackers were more similar to those of gorillas compared to their relatives, who spent more time in villages. This was due to lower abundance of human-origin N. americanus in both gorillas and trackers. Habituated gorillas or those under habituation did not show larger overlap of strongylids with humans compared to unhabituated. We concluded that the occurrence of the human-specific strongylids in gorillas does not increase with direct contact between gorillas and humans due to the habituation. Overall, our results indicate that the degree of habitat sharing between hosts, together with mode of parasite transmission, are important factors for parasite spillover among primates.


Asunto(s)
Variación Genética/genética , Primates/genética , Simpatría/genética , Animales , Ecosistema , Gorilla gorilla/genética , Humanos , Necator/genética , Oesophagostomum/genética , Filogenia
13.
Virology ; 521: 92-98, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29894896

RESUMEN

Murine cytomegalovirus (MCMV) has been reported from house mice (Mus musculus) worldwide, but only recently from Eastern house mice (M. m. musculus), of particular interest because they form a semi-permeable species barrier in Europe with Western house mice, M. m. domesticus. Here we report genome sequences of EastMCMV (from Eastern mice), and set these in the context of MCMV genomes from genus Mus hosts. We show EastMCMV and WestMCMV are genetically distinct. Phylogeny splitting analyses show a genome wide (94%) pattern consistent with no West-East introgression, the major exception (3.8%) being a genome-terminal region of duplicated genes involved in host immune system evasion. As expected from its function, this is a region of maintenance of ancestral polymorphism: The lack of clear splitting signal cannot be interpreted as evidence of introgression. The EastMCMV genome sequences reported here can therefore serve as a well-described resource for exploration of murid MCMV diversity.


Asunto(s)
Variación Genética , Genoma Viral , Especificidad del Huésped , Ratones/virología , Muromegalovirus/genética , Animales , Europa (Continente) , Geografía , Evasión Inmune , Filogenia , Polimorfismo Genético
14.
Sci Rep ; 8(1): 5933, 2018 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-29651122

RESUMEN

Strongylid nematodes in large terrestrial herbivores such as great apes, equids, elephants, and humans tend to occur in complex communities. However, identification of all species within strongylid communities using traditional methods based on coproscopy or single nematode amplification and sequencing is virtually impossible. High-throughput sequencing (HTS) technologies provide opportunities to generate large amounts of sequence data and enable analyses of samples containing a mixture of DNA from multiple species/genotypes. We designed and tested an HTS approach for strain-level identification of gastrointestinal strongylids using ITS-2 metabarcoding at the MiSeq Illumina platform in samples from two free-ranging non-human primate species inhabiting the same environment, but differing significantly in their host traits and ecology. Although we observed overlapping of particular haplotypes, overall the studied primate species differed in their strongylid nematode community composition. Using HTS, we revealed hidden diversity in the strongylid nematode communities in non-human primates, more than one haplotype was found in more than 90% of samples and coinfections of more than one putative species occurred in 80% of samples. In conclusion, the HTS approach on strongylid nematodes, preferably using fecal samples, represents a time and cost-efficient way of studying strongylid communities and provides a resolution superior to traditional approaches.


Asunto(s)
Código de Barras del ADN Taxonómico , Enfermedades de los Caballos/genética , Infecciones por Strongylida/genética , Estrongílidos/genética , Animales , Heces/parasitología , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Enfermedades de los Caballos/parasitología , Caballos/genética , Caballos/parasitología , Secuencias Repetitivas Esparcidas/genética , Estrongílidos/clasificación , Infecciones por Strongylida/parasitología , Simpatría
15.
Int J Parasitol ; 48(7): 519-530, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29530647

RESUMEN

Understanding the complex Entamoeba communities in the mammalian intestine has been, to date, complicated by the lack of a suitable approach for molecular detection of multiple variants co-occurring in mixed infections. Here, we report on the application of a high throughput sequencing approach based on partial 18S rDNA using the Illumina MiSeq platform. We describe, to our knowledge, for the first time, the Entamoeba communities in humans, free-ranging western lowland gorillas and central chimpanzees living in the Dja Faunal Reserve in Cameroon. We detected 36 Entamoeba haplotypes belonging to six haplotype clusters, containing haplotypes possessing high and low host specificity. Most of the detected haplotypes belonged to commensal Entamoeba, however, the pathogenic species (Entamoeba histolytica and Entamoeba nuttalli) were also detected. We observed that some Entamoeba haplotypes are shared between humans and other hosts, indicating their zoonotic potential. The findings are important not only for understanding the epidemiology of amoebiasis in humans in rural African localities, but also in the context of wild great ape conservation.


Asunto(s)
Enfermedades del Simio Antropoideo/parasitología , Entamoeba , Entamebiasis/veterinaria , Gorilla gorilla/parasitología , Secuenciación de Nucleótidos de Alto Rendimiento , Pan troglodytes/parasitología , África/epidemiología , Animales , Enfermedades del Simio Antropoideo/epidemiología , Conservación de los Recursos Naturales , Entamebiasis/epidemiología , Entamebiasis/parasitología , Humanos , Parasitosis Intestinales/epidemiología , Parasitosis Intestinales/parasitología , Parasitosis Intestinales/veterinaria
16.
Mol Ecol ; 26(19): 5292-5304, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28401612

RESUMEN

Vertebrate gut microbiota (GM) is comprised of a taxonomically diverse consortium of symbiotic and commensal microorganisms that have a pronounced effect on host physiology, immune system function and health status. Despite much research on interactions between hosts and their GM, the factors affecting inter- and intraspecific GM variation in wild populations are still poorly known. We analysed data on faecal microbiota composition in 51 passerine species (319 individuals) using Illumina MiSeq sequencing of bacterial 16S rRNA (V3-V4 variable region). Despite pronounced interindividual variation, GM composition exhibited significant differences at the interspecific level, accounting for approximately 20%-30% of total GM variation. We also observed a significant correlation between GM composition divergence and host's phylogenetic divergence, with strength of correlation higher than that of GM vs. ecological or life history traits and geographic variation. The effect of host's phylogeny on GM composition was significant, even after statistical control for these confounding factors. Hence, our data do not support codiversification of GM and passerine phylogeny solely as a by-product of their ecological divergence. Furthermore, our findings do not support that GM vs. host's phylogeny codiversification is driven primarily through trans-generational GM transfer as the GM vs. phylogeny correlation does not increase with higher sequence similarity used when delimiting operational taxonomic units. Instead, we hypothesize that the GM vs. phylogeny correlation may arise as a consequence of interspecific divergence of genes that directly or indirectly modulate composition of GM.


Asunto(s)
Bacterias/clasificación , Microbioma Gastrointestinal/genética , Passeriformes/microbiología , Filogenia , Animales , República Checa , Heces/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento , Passeriformes/clasificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
17.
Infect Genet Evol ; 45: 242-245, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27619058

RESUMEN

Hantaviruses, well-known human pathogens, have only recently been identified on the African continent. Tigray virus (TIGV) was found in Ethiopia in 2012 in a Murinae species, Stenocephalemys albipes, but the genetic data obtained at that time were too limited to correctly assess its phylogenetic position within the hantavirus tree. We used high throughput sequencing to determine the complete genome of TIGV, which showed a typical hantavirus organisation. The large (L), medium (M), and small (S) genome segments were found to be 6532, 3594 and 1908 nucleotides long, respectively, and the 5' and 3' termini for all three segments were predicted to form the panhandle-like structure typical for bunyaviruses. Nucleotide-based phylogenetic analyses revealed that all three coding segments cluster in the phylogroup III sensu Guo et al. (2013). However, while TIGV S segment is basal to the Murinae-associated hantaviruses, the M and L segments are basal to the Soricomorpha-associated hantaviruses. TIGV is the first Murinae-borne hantavirus showing this inconsistent segmental clustering in the hantavirus phylogenetic tree. We finally propose non-exclusive scenarios that could explain the original phylogenetic position of TIGV.


Asunto(s)
Genoma Viral/genética , Infecciones por Hantavirus/virología , Murinae/virología , Orthohantavirus/genética , Animales , Etiopía , Genómica , Infecciones por Hantavirus/veterinaria , Secuenciación de Nucleótidos de Alto Rendimiento
18.
PLoS One ; 10(9): e0137401, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26360776

RESUMEN

Effects of vertebrate-associated microbiota on physiology and health are of significant interest in current biological research. Most previous studies have focused on host-microbiota interactions in captive-bred mammalian models. These interactions and their outcomes are still relatively understudied, however, in wild populations and non-mammalian taxa. Using deep pyrosequencing, we described the cloacal microbiome (CM) composition in free living barn swallows Hirundo rustica, a long-distance migratory passerine bird. Barn swallow CM was dominated by bacteria of the Actinobacteria, Proteobacteria and Firmicutes phyla. Bacteroidetes, which represent an important proportion of the digestive tract microbiome in many vertebrate species, was relatively rare in barn swallow CM (< 5%). CM composition did not differ between males and females. A significant correlation of CM within breeding pair members is consistent with the hypothesis that cloacal contact during within-pair copulation may promote transfer of bacterial assemblages. This effect on CM composition had a relatively low effect size, however, possibly due to the species' high level of sexual promiscuity.


Asunto(s)
Migración Animal , Aves/microbiología , Cloaca/microbiología , Microbiota , Animales , Biodiversidad , Cruzamiento , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Metagenoma , ARN Bacteriano , ARN Ribosómico 16S/genética
19.
Mol Ecol ; 23(20): 5048-60, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25204516

RESUMEN

The effects of gastrointestinal tract microbiota (GTM) on host physiology and health have been the subject of considerable interest in recent years. While a variety of captive bred species have been used in experiments, the extent to which GTM of captive and/or inbred individuals resembles natural composition and variation in wild populations is poorly understood. Using 454 pyrosequencing, we performed 16S rDNA GTM barcoding for 30 wild house mice (Mus musculus) and wild-derived inbred strain mice belonging to two subspecies (M. m. musculus and M. m. domesticus). Sequenced individuals were selected according to a 2 × 2 experimental design: wild (14) vs. inbred origin (16) and M. m. musculus (15) vs. M. m. domesticus (15). We compared alpha diversity (i.e. number of operational taxonomic units - OTUs), beta diversity (i.e. interindividual variability) and microbiota composition across the four groups. We found no difference between M. m. musculus and M. m. domesticus subspecies, suggesting low effect of genetic differentiation between these two subspecies on GTM structure. Both inbred and wild populations showed the same level of microbial alpha and beta diversity; however, we found strong differentiation in microbiota composition between wild and inbred populations. Relative abundance of ~ 16% of OTUs differed significantly between wild and inbred individuals. As laboratory mice represent the most abundant model for studying the effects of gut microbiota on host metabolism, immunity and neurology, we suggest that the distinctness of laboratory-kept mouse microbiota, which differs from wild mouse microbiota, needs to be considered in future biomedical research.


Asunto(s)
Tracto Gastrointestinal/microbiología , Variación Genética , Ratones Endogámicos/microbiología , Microbiota/genética , Animales , Animales Salvajes/microbiología , Bacterias/clasificación , Código de Barras del ADN Taxonómico , Metagenoma , Ratones , ARN Ribosómico 16S/genética
20.
Emerg Infect Dis ; 18(12): 2047-50, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23171649

RESUMEN

We investigated synanthropic small mammals in the Ethiopian Highlands as potential reservoirs for human pathogens and found that 2 rodent species, the Ethiopian white-footed mouse and Awash multimammate mouse, are carriers of novel Mobala virus strains. The white-footed mouse also carries a novel hantavirus, the second Murinae-associated hantavirus found in Africa.


Asunto(s)
Infecciones por Virus ARN/veterinaria , Virus ARN/genética , Enfermedades de los Roedores/virología , Animales , Reservorios de Enfermedades , Etiopía , Orthohantavirus/clasificación , Orthohantavirus/genética , Humanos , Ratones , Datos de Secuencia Molecular , Filogenia , Infecciones por Virus ARN/virología , Virus ARN/clasificación , ARN Viral , Roedores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA