Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Antioxidants (Basel) ; 13(8)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39199267

RESUMEN

Mutations in the lipoyltransferase 1 (LIPT1) gene are rare inborn errors of metabolism leading to a fatal condition characterized by lipoylation defects of the 2-ketoacid dehydrogenase complexes causing early-onset seizures, psychomotor retardation, abnormal muscle tone, severe lactic acidosis, and increased urine lactate, ketoglutarate, and 2-oxoacid levels. In this article, we characterized the disease pathophysiology using fibroblasts and induced neurons derived from a patient bearing a compound heterozygous mutation in LIPT1. A Western blot analysis revealed a reduced expression of LIPT1 and absent expression of lipoylated pyruvate dehydrogenase E2 (PDH E2) and alpha-ketoglutarate dehydrogenase E2 (α-KGDH E2) subunits. Accordingly, activities of PDH and α-KGDH were markedly reduced, associated with cell bioenergetics failure, iron accumulation, and lipid peroxidation. In addition, using a pharmacological screening, we identified a cocktail of antioxidants and mitochondrial boosting agents consisting of pantothenate, nicotinamide, vitamin E, thiamine, biotin, and α-lipoic acid, which is capable of rescuing LIPT1 pathophysiology, increasing the LIPT1 expression and lipoylation of mitochondrial proteins, improving cell bioenergetics, and eliminating iron overload and lipid peroxidation. Furthermore, our data suggest that the beneficial effect of the treatment is mainly mediated by SIRT3 activation. In conclusion, we have identified a promising therapeutic approach for correcting LIPT1 mutations.

2.
Microbiol Resour Announc ; 13(9): e0054724, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39162458

RESUMEN

We present the draft genome sequences of six Flavobacterium psychrophilum isolates recovered from diseased coho salmon (Oncorhynchus kisutch) cultured by two farms in Chile. This study provides the first detailed insights into the genomic characteristics of this fish pathogen recovered from a host with limited information and cultured in Chile.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39058544

RESUMEN

Strain T-12T, an orange, Gram-stain-negative, non-motile, rod-shaped strain, was isolated in November 2013 from water samples collected from an Atlantic salmon (Salmo salar) fry culturing system at a fish farm in Chile. Phylogenetic analysis based on 16S rRNA sequences (1394 bp) revealed that strain T-12T belonged to the genus Flavobacterium, showing close relationships to Flavobacterium bernardetii F-372T (99.48 %) and Flavobacterium terrigena DS-20T (98.50 %). The genome size of strain T-12T was 3.28 Mb, with a G+C content of 31.1 mol%. Genome comparisons aligned strain T-12T with Flavobacterium bernardetii F-372T (GCA_011305415) and Flavobacterium terrigena DSM 17934T (GCA_900108955). The highest digital DNA-DNA hybridization (dDDH) values were 42.6 % with F. bernardetii F-372T (GCA_011305415) and 33.9 % with F. terrigena DSM 17934T (GCA_900108955). Pairwise average nucleotide identity (ANI) calculations were below the species cutoff, with the best results with F. bernardetii F-372T being: ANIb, 90.33 %; ANIm, 91.85 %; and TETRA, 0.997 %. These dDDH and ANI results confirm that strain T-12T represents a new species. The major fatty acids were iso-C15 : 0 and C15 : 1ω6с. Detected polar lipids included phospholipids (n=2), aminophospholipid (n=1), aminolipid (n=1) and unidentified lipids (n=2). The predominant respiratory quinone was menaquinone MK7 (80 %) followed by MK-6 (20 %). Phenotypic, chemotaxonomic, and genomic data support the classification of strain T-12T (=CECT 30410T=RGM 3222T) as representing a novel species of Flavobacterium, for which the name Flavobacterium facile sp. nov. is proposed.


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Flavobacterium , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S , Salmo salar , Análisis de Secuencia de ADN , Vitamina K 2 , Animales , Flavobacterium/genética , Flavobacterium/aislamiento & purificación , Flavobacterium/clasificación , ARN Ribosómico 16S/genética , Ácidos Grasos/análisis , Salmo salar/microbiología , ADN Bacteriano/genética , Chile , Vitamina K 2/análogos & derivados , Vitamina K 2/análisis , Microbiología del Agua , Fosfolípidos/análisis
4.
Biomolecules ; 14(5)2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38786005

RESUMEN

Primary mitochondrial diseases result from mutations in nuclear DNA (nDNA) or mitochondrial DNA (mtDNA) genes, encoding proteins crucial for mitochondrial structure or function. Given that few disease-specific therapies are available for mitochondrial diseases, novel treatments to reverse mitochondrial dysfunction are necessary. In this work, we explored new therapeutic options in mitochondrial diseases using fibroblasts and induced neurons derived from patients with mutations in the GFM1 gene. This gene encodes the essential mitochondrial translation elongation factor G1 involved in mitochondrial protein synthesis. Due to the severe mitochondrial defect, mutant GFM1 fibroblasts cannot survive in galactose medium, making them an ideal screening model to test the effectiveness of pharmacological compounds. We found that the combination of polydatin and nicotinamide enabled the survival of mutant GFM1 fibroblasts in stress medium. We also demonstrated that polydatin and nicotinamide upregulated the mitochondrial Unfolded Protein Response (mtUPR), especially the SIRT3 pathway. Activation of mtUPR partially restored mitochondrial protein synthesis and expression, as well as improved cellular bioenergetics. Furthermore, we confirmed the positive effect of the treatment in GFM1 mutant induced neurons obtained by direct reprogramming from patient fibroblasts. Overall, we provide compelling evidence that mtUPR activation is a promising therapeutic strategy for GFM1 mutations.


Asunto(s)
Fibroblastos , Glucósidos , Mitocondrias , Enfermedades Mitocondriales , Niacinamida , Estilbenos , Respuesta de Proteína Desplegada , Humanos , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Glucósidos/farmacología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Mutación , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Niacinamida/farmacología , Fenotipo , Estilbenos/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos , Factor G de Elongación Peptídica/efectos de los fármacos , Factor G de Elongación Peptídica/genética , Factor G de Elongación Peptídica/metabolismo
5.
Toxins (Basel) ; 16(5)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38787076

RESUMEN

Kunitz-type peptide expression has been described in the venom of snakes of the Viperidae, Elapidae and Colubridae families. This work aimed to identify these peptides in the venom gland transcriptome of the coral snake Micrurus mipartitus. Transcriptomic analysis revealed a high diversity of venom-associated Kunitz serine protease inhibitor proteins (KSPIs). A total of eight copies of KSPIs were predicted and grouped into four distinctive types, including short KSPI, long KSPI, Kunitz-Waprin (Ku-WAP) proteins, and a multi-domain Kunitz-type protein. From these, one short KSPI showed high identity with Micrurus tener and Austrelaps superbus. The long KSPI group exhibited similarity within the Micrurus genus and showed homology with various elapid snakes and even with the colubrid Pantherophis guttatus. A third group suggested the presence of Kunitz domains in addition to a whey-acidic-protein-type four-disulfide core domain. Finally, the fourth group corresponded to a transcript copy with a putative 511 amino acid protein, formerly annotated as KSPI, which UniProt classified as SPINT1. In conclusion, this study showed the diversity of Kunitz-type proteins expressed in the venom gland transcriptome of M. mipartitus.


Asunto(s)
Serpientes de Coral , Venenos Elapídicos , Perfilación de la Expresión Génica , Transcriptoma , Animales , Serpientes de Coral/genética , Venenos Elapídicos/genética , Venenos Elapídicos/química , Secuencia de Aminoácidos , Simulación por Computador , Serpientes Venenosas
6.
Artículo en Inglés | MEDLINE | ID: mdl-38563675

RESUMEN

Strain LB-N7T, a novel Gram-negative, orange, translucent, gliding, rod-shaped bacterium, was isolated from water samples collected from an open system of Atlantic salmon (Salmo salar) smolts in a fish farm in Chile during a flavobacterial infection outbreak in 2015. Phylogenetic analysis based on 16S rRNA sequences (1337 bp) revealed that strain LB-N7T belongs to the genus Flavobacterium and is closely related to the type strains Flavobacterium ardleyense A2-1T (98.8 %) and Flavobacterium cucumis R2A45-3T (96.75 %). The genome size of strain LB-N7T was 2.93 Mb with a DNA G+C content 32.6 mol%. Genome comparisons grouped strain LB-N7T with Flavobacterium cheniae NJ-26T, Flavobacterium odoriferum HXWNR29T, Flavobacterium lacisediminis TH16-21T and Flavobacterium celericrescens TWA-26T. The calculated digital DNA-DNA hybridization values between strain LB-N7T and the closest related Flavobacterium strains were 23.3 % and the average nucleotide identity values ranged from 71.52 to 79.39 %. Menaquinone MK-6 was the predominant respiratory quinone, followed by MK-7. The major fatty acids were iso-C15 : 0 and anteiso-C15 : 0. The primary polar lipids detected included nine unidentified lipids, two amounts of aminopospholipid and phospholipids, and a smaller amount of aminolipid. Phenotypic, genomic, and chemotaxonomic data suggest that strain LB-N7T (=CECT 30406T=RGM 3221T) represents as a novel bacterial species, for which the name Flavobacterium psychraquaticum sp. nov. is proposed.


Asunto(s)
Flavobacterium , Salmo salar , Animales , Flavobacterium/genética , Chile , Filogenia , ARN Ribosómico 16S/genética , Composición de Base , Ácidos Grasos/química , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana
7.
PLoS One ; 19(3): e0298896, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38507346

RESUMEN

Starch residue analysis was carried out on stone tools recovered from the bottom layer of the Anakena site on Rapa Nui (Easter Island). These deposits have been dated to AD 1000-1300 AD and so far, represent the earliest evidence of human settlement on this island. Twenty obsidian tools were analyzed. Analysis of 46 starch grains recovered from 20 obsidian tools from the earliest dated level of the Anakena site on Rapa Nui provides direct evidence for translocation of traditional crop plants at initial stages of the colonization of this island. The analysis of starch grains was based mainly on statistical methods for species identification but was complemented by visual inspection in some cases. Our results identify taxons previously unknown to have been cultivated on the island, such as breadfruit (Artocarpus altilis), Zingiber officinale (ginger), and starch grains of the Spondias dulcis and Inocarpus fagifer tropical trees. Additionally, starch grains of Colocasia esculenta (taro) and Dioscorea sp. (yam), both common species in Pacific agriculture, were identified. Furthermore, the presence of four American taxa Ipomoea batatas (sweet potato), Canna sp. (achira), Manihot esculenta (manioc), and Xanthosoma sp., was detected. The occurrence of Canna sp., M. esculenta, and Xanthosoma sp. starch grains suggests the translocation of previously not described South American cultivars into the Pacific. The detection of I. batatas from this site in Rapa Nui constitutes the earliest record of this cultigen in the Pacific. Our study provides direct evidence for translocation of a set of traditional Polynesian and South American crop plants at the initial stages of colonization in Rapa Nui.


Asunto(s)
Artocarpus , Dioscorea , Ipomoea batatas , Humanos , Almidón , Grupos Raciales , Productos Agrícolas , América del Sur
8.
Antioxidants (Basel) ; 12(12)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38136143

RESUMEN

Nemaline myopathy (NM) is one of the most common forms of congenital myopathy and it is identified by the presence of "nemaline bodies" (rods) in muscle fibers by histopathological examination. The most common forms of NM are caused by mutations in the Actin Alpha 1 (ACTA1) and Nebulin (NEB) genes. Clinical features include hypotonia and muscle weakness. Unfortunately, there is no curative treatment and the pathogenetic mechanisms remain unclear. In this manuscript, we examined the pathophysiological alterations in NM using dermal fibroblasts derived from patients with mutations in ACTA1 and NEB genes. Patients' fibroblasts were stained with rhodamine-phalloidin to analyze the polymerization of actin filaments by fluorescence microscopy. We found that patients' fibroblasts showed incorrect actin filament polymerization compared to control fibroblasts. Actin filament polymerization defects were associated with mitochondrial dysfunction. Furthermore, we identified two mitochondrial-boosting compounds, linoleic acid (LA) and L-carnitine (LCAR), that improved the formation of actin filaments in mutant fibroblasts and corrected mitochondrial bioenergetics. Our results indicate that cellular models can be useful to study the pathophysiological mechanisms involved in NM and to find new potential therapies. Furthermore, targeting mitochondrial dysfunction with LA and LCAR can revert the pathological alterations in NM cellular models.

9.
Biomolecules ; 13(12)2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38136659

RESUMEN

Mitochondria play a key role in cellular functions, including energy production and oxidative stress regulation. For this reason, maintaining mitochondrial homeostasis and proteostasis (homeostasis of the proteome) is essential for cellular health. Therefore, there are different mitochondrial quality control mechanisms, such as mitochondrial biogenesis, mitochondrial dynamics, mitochondrial-derived vesicles (MDVs), mitophagy, or mitochondrial unfolded protein response (mtUPR). The last item is a stress response that occurs when stress is present within mitochondria and, especially, when the accumulation of unfolded and misfolded proteins in the mitochondrial matrix surpasses the folding capacity of the mitochondrion. In response to this, molecular chaperones and proteases as well as the mitochondrial antioxidant system are activated to restore mitochondrial proteostasis and cellular function. In disease contexts, mtUPR modulation holds therapeutic potential by mitigating mitochondrial dysfunction. In particular, in the case of neurodegenerative diseases, such as primary mitochondrial diseases, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic Lateral Sclerosis (ALS), or Friedreich's Ataxia (FA), there is a wealth of evidence demonstrating that the modulation of mtUPR helps to reduce neurodegeneration and its associated symptoms in various cellular and animal models. These findings underscore mtUPR's role as a promising therapeutic target in combating these devastating disorders.


Asunto(s)
Enfermedades Mitocondriales , Enfermedades Neurodegenerativas , Animales , Enfermedades Neurodegenerativas/metabolismo , Mitocondrias/metabolismo , Envejecimiento , Respuesta de Proteína Desplegada
10.
Cancer Invest ; 41(10): 821-829, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37975838

RESUMEN

BACKGROUND: Immunogenic cell death (ICD) is known for releasing damage-associated molecular patterns (DAMPs) from tumor cells. We aimed to find ICD signals by assessing the variation of plasmatic DAMPs (HMGB1, S100A8) before-after standard of care (SoC) systemic treatment in patients with advanced solid tumors. METHODS: Patients scheduled to start a new line of systemic treatment were included. Plasmatic concentrations of HMGB1 and S100A8 were measured (ng/mL) before and after three months of treatment. RESULTS: Fifty-two patients were included. Forty-four patients (85%) had metastases, and 8 (15%) were treated for stage III tumors. The most frequent tumor sites were colorectal (35%) and lung (25%). Forty-two patients (81%) received this treatment in the first-line setting. Thirty-six patients (69%) were treated chemotherapy (CT) alone, ten (19%) CT plus targeted therapy, two (3.8%) carboplatin-pemetrexed-pembrolizumab, three (5.8%) pembrolizumab alone and one (1.9%) cetuximab alone. Median plasmatic concentration of S100A8 was significantly higher before than after treatment in the whole population (3.78 vs. 2.91 ng/mL; p = 0.011) and more markedly in the subgroups of patients who experienced RECIST-assessed tumor response (5.70 vs. 2.63 ng/mL; p = 0.002). Median plasmatic concentration of HMGB1was not significantly different before and after treatment (10.23 vs. 11.85 ng/mL; p = 0.382) and did not differ depending on tumor response. Median PFS was not significantly different between patients whose plasma HMBG1 concentration decreased or increased (8.0 vs. 10.6 months; p = 0.29) after treatment. Median PFS was significantly longer in those patients in whom the plasma concentration of S100A8 decreased after treatment (12 vs. 4.7 months; p < 0.001). Median OS was not significantly different between patients whose plasma HMBG1 concentration decreased or increased (13.1 vs. 14.7 months; p = 0.46) after treatment. Median OS was significantly longer in those patients in whom the plasma concentration of S100A8 decreased after treatment (16.7 vs. 9.0 months; p < 0.001). CONCLUSIONS: Signals of ICD were not observed. S100A8 behaves as an inflammatory marker with decreased concentration after treatment, mostly in RECIST-responders. PFS and OS were significantly prolonged in those patients who experienced a decrease of S100A8 compared with those patients who experienced increase of plasma S100A8 at three months.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Proteína HMGB1 , Neoplasias Pulmonares , Humanos , Proteína HMGB1/uso terapéutico , Nivel de Atención , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología
11.
Pharmaceuticals (Basel) ; 16(10)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37895830

RESUMEN

The term neurodegeneration with brain iron accumulation (NBIA) brings together a broad set of progressive and disabling neurological genetic disorders in which iron is deposited preferentially in certain areas of the brain. Among NBIA disorders, the most frequent subtype is pantothenate kinase-associated neurodegeneration (PKAN) caused by pathologic variants in the PANK2 gene codifying the enzyme pantothenate kinase 2 (PANK2). To date, there are no effective treatments to stop the progression of these diseases. This review discusses the utility of patient-derived cell models as a valuable tool for the identification of pharmacological or natural compounds for implementing polytarget precision medicine in PKAN. Recently, several studies have described that PKAN patient-derived fibroblasts present the main pathological features associated with the disease including intracellular iron overload. Interestingly, treatment of mutant cell cultures with various supplements such as pantothenate, pantethine, vitamin E, omega 3, α-lipoic acid L-carnitine or thiamine, improved all pathophysiological alterations in PKAN fibroblasts with residual expression of the PANK2 enzyme. The information provided by pharmacological screenings in patient-derived cellular models can help optimize therapeutic strategies in individual PKAN patients.

12.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37906096

RESUMEN

Strain PVT-9aT, a novel Gram-stain-negative, aerobic, non-spore-forming, motile-by-gliding and rod-shaped bacterium, was isolated from a skin lesion of Atlantic salmon (Salmo salar L.) during a tenacibaculosis outbreak that occurred in 2016 at a Chilean fish farm. Phylogenetic analysis based on 16S rRNA gene sequencing confirmed that strain PVT-9aT belonged to the genus Tenacibaculum, being related to the closest type strains Tenacibaculum haliotis KCTC 52419T (98.49 % sequence similarity), Tenacibaculum aestuariivivum JDTF-79T (97.36 %), Tenacibaculum insulae JDTF-31T (97.29 %) and Tenacibaculum ovolyticum IFO 15947T (97.15 %). The genome size of strain PVT-9aT was 2.73 Mb with a DNA G+C content 31.09 mol%. Average nucleotide identity analysis among 30 Tenacibaculum species rendered the most similar strains as follows: T. haliotis KCTC 52419T (87.91 %), T. ovolyticum IFO 15947T (82.47 %), Tenacibaculum dicentrarchi 35/09T (81.08 %), Tenacibaculum finnmarkense gv finnmarkense TNO006T (80.91 %) and T. finnmarkense gv ulcerans TNO010T (80.96 %). Menaquinone MK-6 was the predominant respiratory quinone. The predominant cell fatty acids (>10 %) were iso-C15 : 0, iso-C15 : 1 G and iso-C15 : 0 3-OH. Phenotypic, chemotaxonomic and genomic data supported the assignment of strain PVT-9aT (=DSM 115155T=RGM 3472T) as representing a novel species of Tenacibaculum, for which the name Tenacibaculum bernardetii sp. nov. is proposed.


Asunto(s)
Salmo salar , Tenacibaculum , Animales , Ácidos Grasos/química , Agua de Mar/microbiología , Chile , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Composición de Base , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana
13.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37834028

RESUMEN

Neurodegeneration with brain iron accumulation (NBIA) is a group of rare neurogenetic disorders frequently associated with iron accumulation in the basal nuclei of the brain. Among NBIA subtypes, ß-propeller protein-associated neurodegeneration (BPAN) is associated with mutations in the autophagy gene WDR45. The aim of this study was to demonstrate the autophagic defects and secondary pathological consequences in cellular models derived from two patients harboring WDR45 mutations. Both protein and mRNA expression levels of WDR45 were decreased in patient-derived fibroblasts. In addition, the increase of LC3B upon treatments with autophagy inducers or inhibitors was lower in mutant cells compared to control cells, suggesting decreased autophagosome formation and impaired autophagic flux. A transmission electron microscopy (TEM) analysis showed mitochondrial vacuolization associated with the accumulation of lipofuscin-like aggregates containing undegraded material. Autophagy dysregulation was also associated with iron accumulation and lipid peroxidation. In addition, mutant fibroblasts showed altered mitochondrial bioenergetics. Antioxidants such as pantothenate, vitamin E and α-lipoic prevented lipid peroxidation and iron accumulation. However, antioxidants were not able to correct the expression levels of WDR45, neither the autophagy defect nor cell bioenergetics. Our study demonstrated that WDR45 mutations in BPAN cellular models impaired autophagy, iron metabolism and cell bioenergetics. Antioxidants partially improved cell physiopathology; however, autophagy and cell bioenergetics remained affected.


Asunto(s)
Antioxidantes , Proteínas Portadoras , Humanos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Peroxidación de Lípido , Autofagia/genética , Hierro/metabolismo
14.
J Fish Dis ; 46(9): 1001-1012, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37309564

RESUMEN

Iron uptake during infection is an essential pathogenicity factor of several bacteria, including Tenacibaculum dicentrarchi, an emerging pathogen for salmonid and red conger eel (Genypterus chilensis) farms in Chile. Iron-related protein families were recently found in eight T. dicentrarchi genomes, but biological studies have not yet confirmed functions. The investigation reported herein clearly demonstrated for the first time that T. dicentrarchi possesses different systems for iron acquisition-one involving the synthesis of siderophores and another allowing for the utilization of heme groups. Using 38 isolates of T. dicentrarchi and the type strain CECT 7612T , all strains grew in the presence of the chelating agent 2.2'-dipyridyl (from 50 to 150 µM) and produced siderophores on chrome azurol S plates. Furthermore, 37 of the 38 T. dicentrarchi isolates used at least four of the five iron sources (i.e. ammonium iron citrate, ferrous sulfate, iron chloride hexahydrate, haemoglobin and/or hemin) when added to iron-deficient media, although the cell yield was less when using hemin. Twelve isolates grew in the presence of hemin, and 10 of them used only 100 µM. Under iron-supplemented or iron-restricted conditions, whole cells of three isolates and the type strain showed at least one membrane protein induced in iron-limiting conditions (c.a. 37.9 kDa), regardless of the isolation host. All phenotypic results were confirmed by in-silico genomic T. dicentrarchi analysis. Future studies will aim to establish a relationship between iron uptake ability and virulence in T. dicentrarchi through in vivo assays.


Asunto(s)
Enfermedades de los Peces , Tenacibaculum , Animales , Hierro/metabolismo , Sideróforos , Hemina/metabolismo , Enfermedades de los Peces/microbiología , Tenacibaculum/genética , Peces
15.
Orphanet J Rare Dis ; 18(1): 80, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37046296

RESUMEN

BACKGROUND: Neurodegeneration with brain iron accumulation (NBIA) disorders are a group of neurodegenerative diseases that have in common the accumulation of iron in the basal nuclei of the brain which are essential components of the extrapyramidal system. Frequent symptoms are progressive spasticity, dystonia, muscle rigidity, neuropsychiatric symptoms, and retinal degeneration or optic nerve atrophy. One of the most prevalent subtypes of NBIA is Pantothenate kinase-associated neurodegeneration (PKAN). It is caused by pathogenic variants in the gene of pantothenate kinase 2 (PANK2) which encodes the enzyme responsible for the first reaction on the coenzyme A (CoA) biosynthesis pathway. Thus, deficient PANK2 activity induces CoA deficiency as well as low expression levels of 4'-phosphopantetheinyl proteins which are essential for mitochondrial metabolism. METHODS: This study is aimed at evaluating the role of alpha-lipoic acid (α-LA) in reversing the pathological alterations in fibroblasts and induced neurons derived from PKAN patients. Iron accumulation, lipid peroxidation, transcript and protein expression levels of PANK2, mitochondrial ACP (mtACP), 4''-phosphopantetheinyl and lipoylated proteins, as well as pyruvate dehydrogenase (PDH) and Complex I activity were examined. RESULTS: Treatment with α-LA was able to correct all pathological alterations in responsive mutant fibroblasts with residual PANK2 enzyme expression. However, α-LA had no effect on mutant fibroblasts with truncated/incomplete protein expression. The positive effect of α-LA in particular pathogenic variants was also confirmed in induced neurons derived from mutant fibroblasts. CONCLUSIONS: Our results suggest that α-LA treatment can increase the expression levels of PANK2 and reverse the mutant phenotype in PANK2 responsive pathogenic variants. The existence of residual enzyme expression in some affected individuals raises the possibility of treatment using high dose of α-LA.


Asunto(s)
Enfermedades Neurodegenerativas , Neurodegeneración Asociada a Pantotenato Quinasa , Ácido Tióctico , Humanos , Suplementos Dietéticos , Hierro/metabolismo , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/genética , Neurodegeneración Asociada a Pantotenato Quinasa/tratamiento farmacológico , Neurodegeneración Asociada a Pantotenato Quinasa/genética , Neurodegeneración Asociada a Pantotenato Quinasa/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Ácido Tióctico/uso terapéutico , Ácido Tióctico/metabolismo
16.
Metabolites ; 13(3)2023 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-36984858

RESUMEN

Neurodegenerative diseases are characterized by the progressive loss of neurons, synapses, dendrites, and myelin in the central and/or peripheral nervous system. Actual therapeutic options for patients are scarce and merely palliative. Although they affect millions of patients worldwide, the molecular mechanisms underlying these conditions remain unclear. Mitochondrial dysfunction is generally found in neurodegenerative diseases and is believed to be involved in the pathomechanisms of these disorders. Therefore, therapies aiming to improve mitochondrial function are promising approaches for neurodegeneration. Although mitochondrial-targeted treatments are limited, new research findings have unraveled the therapeutic potential of several groups of antibiotics. These drugs possess pleiotropic effects beyond their anti-microbial activity, such as anti-inflammatory or mitochondrial enhancer function. In this review, we will discuss the controversial use of antibiotics as potential therapies in neurodegenerative diseases.

17.
Microbiol Resour Announc ; 12(3): e0102522, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36847531

RESUMEN

Here, we present the draft genome sequence of Tenacibaculum haliotis strain RA3-2T (i.e., KCTC 52419T and NBRC 112382T), isolated from Korean wild abalone (Haliotis discus hannai). As the only strain for this Tenacibaculum species worldwide, the information is of use for comparative genomic analyses delineating Tenacibaculum species.

18.
J Fish Dis ; 46(5): 517-526, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36727560

RESUMEN

Tenacibaculosis is an emerging disease that severely affects salmonid farming in Chile, producing high mortalities and causing great economic losses. This work describes a novel PCR assay for the specific detection of Tenacibaculum piscium, a species recently described and identified in tenacibaculosis outbreaks in Norway and Chile. The designed primers amplified a 678-bp fragment of the peptidase gene (peptidase M23 family) from T. piscium. This method is specific for T. piscium; no other chromosomal DNA amplification products were obtained for other Tenacibaculum species. In pure cultures, the PCR assay detected up to 500 pg of DNA, or the equivalent of 2.44 ± 0.06 × 104 CFU/ml. For seeded fish samples (i.e., gills, liver, kidney, and mucus), the sensitivity limit was 4.88 ± 0.11 × 106 CFU/g, sufficient to detect T. piscium in acute infections in fish. Notably, this sensitivity level was 100-fold lower for DNA extracted from mucus samples. As compared to other existing methodologies (e.g., gene sequencing), the PCR approach described in this work allowed for the easiest detection of T. piscium in mucus samples obtained from challenged fish, an important outcome considering that the identification of this bacterium is difficult. Our results indicate that the designed specific primers and PCR method provide a rapid and specific diagnosis of T. piscium.


Asunto(s)
Enfermedades de los Peces , Salmonidae , Tenacibaculum , Animales , Tenacibaculum/genética , Enfermedades de los Peces/microbiología , Reacción en Cadena de la Polimerasa/métodos , Cartilla de ADN , ADN
19.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36674998

RESUMEN

Mitochondrial dysfunction is a key pathological event in many diseases. Its role in energy production, calcium homeostasis, apoptosis regulation, and reactive oxygen species (ROS) balance render mitochondria essential for cell survival and fitness. However, there are no effective treatments for most primary and secondary mitochondrial diseases to this day. Therefore, new therapeutic approaches, such as the modulation of the mitochondrial unfolded protein response (mtUPR), are being explored. mtUPRs englobe several compensatory processes related to proteostasis and antioxidant system mechanisms. mtUPR activation, through an overcompensation for mild intracellular stress, promotes cell homeostasis and improves lifespan and disease alterations in biological models of mitochondrial dysfunction in age-related diseases, cardiopathies, metabolic disorders, and primary mitochondrial diseases. Although mtUPR activation is a promising therapeutic option for many pathological conditions, its activation could promote tumor progression in cancer patients, and its overactivation could lead to non-desired side effects, such as the increased heteroplasmy of mitochondrial DNA mutations. In this review, we present the most recent data about mtUPR modulation as a therapeutic approach, its role in diseases, and its potential negative consequences in specific pathological situations.


Asunto(s)
Enfermedades Mitocondriales , Humanos , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Longevidad , Respuesta de Proteína Desplegada
20.
Neural Regen Res ; 18(6): 1196-1202, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36453394

RESUMEN

Lipid peroxidation and iron accumulation are closely associated with neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's diseases, or neurodegeneration with brain iron accumulation disorders. Mitochondrial dysfunction, lipofuscin accumulation, autophagy disruption, and ferroptosis have been implicated as the critical pathomechanisms of lipid peroxidation and iron accumulation in these disorders. Currently, the connection between lipid peroxidation and iron accumulation and the initial cause or consequence in neurodegeneration processes is unclear. In this review, we have compiled the known mechanisms by which lipid peroxidation triggers iron accumulation and lipofuscin formation, and the effect of iron overload on lipid peroxidation and cellular function. The vicious cycle established between both pathological alterations may lead to the development of neurodegeneration. Therefore, the investigation of these mechanisms is essential for exploring therapeutic strategies to restrict neurodegeneration. In addition, we discuss the interplay between lipid peroxidation and iron accumulation in neurodegeneration, particularly in PLA2G6-associated neurodegeneration, a rare neurodegenerative disease with autosomal recessive inheritance, which belongs to the group of neurodegeneration with brain iron accumulation disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...