Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Behav Brain Res ; 459: 114762, 2024 02 29.
Artículo en Inglés | MEDLINE | ID: mdl-37977340

RESUMEN

The Roman high- (RHA) and low-avoidance (RLA) rats were bidirectionally selected and bred for, respectively, their rapid vs. extremely poor acquisition in the two-way active avoidance task. Consistent between-strain neurobehavioural differences have been found in anxiety- and stress-linked traits, as well as in schizophrenia-related phenotypes. RLAs display enhanced anxious- and stress-related phenotypes, whereas RHA rats show impulsivity, hyperactivity and attention/cognition-related impairments. Many of these typical behavioural phenotypes have been reported to be positively modulated by environmental treatments such as neonatal handling (NH). However, most studies on the Roman rat strains have been carried out in males. Thus, the present study for the first time focused on the joint evaluation of differences in novel object exploration (NOE), social interaction (SI), prepulse inhibition of the startle response (PPI), and cognitive performance and flexibility in various spatial tasks (using the Morris water maze, MWM) in females of both Roman rat strains. We also aimed at evaluating the long-lasting effects of NH treatment on the RHA vs. RLA profiles in these tests/tasks. Results show that anxiety-related behavior, as measured by the NOE test and self-grooming in the SI test, was increased in RLA rats, and dramatically reduced by NH. In the SI test RLA rats displayed diminished social interaction, which was rescued by NH. RHA females exhibited a deficit of PPI, which was not affected by NH. Spatial tasks in the MWM showed impairments of working memory, reference learning/memory and spatial reversal learning (i.e., cognitive flexibility) in RHA females. Spatial reference learning and cognitive flexibility (i.e., reversal task) showed some improvement in rats (mainly in RHAs) that had received NH during the first three weeks of life. With the exception of the SI test, the pattern of differences between female RHA vs. RLA profiles was overall consistent with what has previously been found in males of both strains, and NH treatment was able to enduringly improve some emotion-related and (spatial) cognitive outcomes in both strains.


Asunto(s)
Esquizofrenia , Femenino , Masculino , Ratas , Animales , Inhibición Prepulso/fisiología , Reflejo de Sobresalto , Cognición/fisiología , Atención , Reacción de Prevención/fisiología
2.
Personal Neurosci ; 6: e8, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38107777

RESUMEN

The Roman high-avoidance (RHA) and low-avoidance (RLA) rat lines/strains were established in Rome through bidirectional selection of Wistar rats for rapid (RHA) or extremely poor (RLA) acquisition of a two-way active avoidance task. Relative to RHAs, RLA rats exhibit enhanced threat sensitivity, anxiety, fear and vulnerability to stress, a passive coping style and increased sensitivity to frustration. Thus, RLA rats' phenotypic profile falls well within the "internalizing" behavior spectrum. Compared with RLAs and other rat strains/stocks, RHAs present increased impulsivity and reward sensitivity, deficits in social behavior and attentional/cognitive processes, novelty-induced hyper-locomotion and vulnerability to psychostimulant sensitization and drug addiction. Thus, RHA rats' phenotypes are consistent with a "disinhibiting externalizing" profile. Many neurobiological/molecular traits differentiate both rat lines/strains. For example, relative to RLA rats, RHAs exhibit decreased function of the prefrontal cortex (PFC), hippocampus and amygdala, increased functional tone of the mesolimbic dopamine system, a deficit of central metabotropic glutamate-2 (mGlu2) receptors, increased density of serotonin 5-HT2A receptors in the PFC, impairment of GABAergic transmission in the PFC, alterations of several synaptic markers and increased density of pyramidal immature dendrític spines in the PFC. These characteristics suggest an immature brain of RHA rats and are reminiscent of schizophrenia features like hypofrontality and disruption of the excitation/inhibition cortical balance. We review evidence supporting RLA rats as a valid model of anxiety/fear, stress and frustration vulnerability, whereas RHA rats represent a promising translational model of neurodevelopmental alterations related to impulsivity, schizophrenia-relevant features and comorbidity with drug addiction vulnerability.

3.
Psychopharmacology (Berl) ; 240(9): 1931-1945, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37442829

RESUMEN

RATIONALE: The administration of NMDA receptor (NMDAR) antagonists constitutes a widely used model that produce both positive (e.g., hyperactivity) and negative (e.g., social withdrawal) symptoms relevant for schizophrenia in rodents. These effects can be reversed with the administration of atypical (second and third generation) antipsychotics. OBJECTIVES: In this study we combined the NMDAR-antagonist model with the Roman High-Avoidance (RHA) strain, a psychogenetically selected model of schizophrenia-relevant features. We also studied whether some atypical antipsychotic drugs (clozapine, ziprasidone, and aripiprazole) would be able to attenuate or reverse the behavioural alterations induced by MK801 and whether such effects might be dependent on the rat strain. METHODS: MK801 dose-response study was conducted in RHA and Roman Low-Avoidance (RLA) male rats. After that, the 0.15 mg/kg MK801 dose was selected to carry out pharmacological studies versus atypical antipsychotics. RESULTS: In the first experiment we establish that MK801 (dizocilpine), a NMDAR antagonist, produces dose-related hyperactivity and social withdrawal, which are more marked in RHA than RLA rats. The administration of the atypical antipsychotics clozapine (2.5 mg/kg) or ziprasidone (2.5 mg/kg) partially reversed or attenuated some of the social behaviour deficits and hyperactivity induced by the administration of MK801. Aripiprazole (3 mg/kg), a third-generation antipsychotic, reversed or attenuated the social preference deficit, the hyperactivity and the impairment of social latency induced by MK801. CONCLUSIONS: These results seem to be in line with previous studies with the NMDAR-antagonist model and add face (MK801-induced social withdrawal and hyperactivity) and predictive (attenuation of MK801-induced effects by atypical antipsychotics) validity to the RHA rat strain as a model of schizophrenia-relevant features.


Asunto(s)
Antipsicóticos , Clozapina , Esquizofrenia , Masculino , Ratas , Animales , Antipsicóticos/uso terapéutico , Esquizofrenia/inducido químicamente , Esquizofrenia/tratamiento farmacológico , Maleato de Dizocilpina/farmacología , Maleato de Dizocilpina/uso terapéutico , Clozapina/uso terapéutico , Aripiprazol/uso terapéutico , Aislamiento Social
4.
Eur Neuropsychopharmacol ; 74: 32-46, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37263043

RESUMEN

Disruption of brain development early in life may underlie the neurobiology behind schizophrenia. We have reported more immature synaptic spines in the frontal cortex (FC) of adult Roman High-Avoidance (RHA-I) rats, a behavioural model displaying schizophrenia-like traits. Here, we performed a whole transcriptome analysis in the FC of 4 months old male RHA-I (n=8) and its counterpart, the Roman Low-Avoidance (RLA-I) (n=8). We identified 203 significant genes with overrepresentation of genes involved in synaptic function. Next, we performed a gene set enrichment analysis (GSEA) for genes co-expressed during neurodevelopment. Gene networks were obtained by weighted gene co-expression network analysis (WGCNA) of a transcriptomic dataset containing human FC during lifespan (n=269). Out of thirty-one functional gene networks, six were significantly enriched in the RHA-I. These were differentially regulated during infancy and enriched in biological ontologies related to myelination, synaptic function, and immune response. We validated differential gene expression in a new cohort of adolescent (<=2 months old) and young-adult (>=3 months old) RHA-I and RLA-I rats. The results confirmed overexpression of Gsn, Nt5cd1, Ppp1r1b, and Slc9a3r1 in young-adult RHA-I, while Cables1, a regulator of Cdk5 phosphorylation in actin regulation and involved in synaptic plasticity and maturation, was significantly downregulated in adolescent RHA-I. This age-related expression change was also observed for presynaptic components Snap25 and Snap29. Our results show a different maturational expression profile of synaptic components in the RHA-I strain, supporting a shift in FC maturation underlying schizophrenia-like behavioural traits and adding construct validity to this strain as a neurodevelopmental model.


Asunto(s)
Esquizofrenia , Humanos , Ratas , Masculino , Animales , Adolescente , Lactante , Esquizofrenia/genética , Lóbulo Frontal , Fosforilación , Perfilación de la Expresión Génica , Reacción de Prevención/fisiología , Proteínas Qb-SNARE , Proteínas Qc-SNARE
5.
Eur J Investig Health Psychol Educ ; 13(2): 317-330, 2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36826208

RESUMEN

The prevalence of anxiety has increased dramatically due to COVID-19, so effective preventive interventions are welcome. The main objective of our study was to compare the acute relaxation response (RR) induced by Tibetan singing bowl (TSB) sound-based treatment against progressive muscle relaxation (PMR) and a control waiting list group (CWL) in a single treatment session in an adult nonclinical anxious population. In this cross-sectional randomized control trial, 50 participants selected based on high state anxiety were randomly assigned to one of the experimental groups. Pre/post self-reported anxiety, electroencephalographic activity (EEG), and heart rate variability (HRV) were recorded at baseline (T1), minute 15 (T2), minute 30 (T3), and minute 45 (T4). The TSB group showed significant reductions in alpha power (from T2 to T4) and increased HRV (from T3 to T4) compared with the PMR and CWL groups. Moreover, TSB and PMR both showed significant reductions in self-reported anxiety compared with CWL, with this effect being more evident in the TSB group. We concluded that a single session of TSB treatment was able to induce a more evident psychological/physiological relaxation response compared with PMR and CWL. TSB could be a relevant acute intervention in stressful situations or crisis intervention and while waiting for conventional interventions.

6.
Curr Neuropharmacol ; 21(9): 1934-1952, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36809938

RESUMEN

Schizophrenia is a chronic and severe mental disorder with high heterogeneity in its symptoms clusters. The effectiveness of drug treatments for the disorder is far from satisfactory. It is widely accepted that research with valid animal models is essential if we aim at understanding its genetic/ neurobiological mechanisms and finding more effective treatments. The present article presents an overview of six genetically-based (selectively-bred) rat models/strains, which exhibit neurobehavioral schizophrenia-relevant features, i.e., the Apomorphine-susceptible (APO-SUS) rats, the Low-prepulse inhibition rats, the Brattleboro (BRAT) rats, the Spontaneously Hypertensive rats (SHR), the Wisket rats and the Roman High-Avoidance (RHA) rats. Strikingly, all the strains display impairments in prepulse inhibition of the startle response (PPI), which remarkably, in most cases are associated with novelty-induced hyperlocomotion, deficits of social behavior, impairment of latent inhibition and cognitive flexibility, or signs of impaired prefrontal cortex (PFC) function. However, only three of the strains share PPI deficits and dopaminergic (DAergic) psychostimulant-induced hyperlocomotion (together with prefrontal cortex dysfunction in two models, the APO-SUS and RHA), which points out that alterations of the mesolimbic DAergic circuit are a schizophrenia-linked trait that not all models reproduce, but it characterizes some strains that can be valid models of schizophrenia-relevant features and drug-addiction vulnerability (and thus, dual diagnosis). We conclude by putting the research based on these genetically-selected rat models in the context of the Research Domain Criteria (RDoC) framework, suggesting that RDoC-oriented research programs using selectively-bred strains might help to accelerate progress in the various aspects of the schizophrenia-related research agenda.


Asunto(s)
Esquizofrenia , Ratas , Animales , Esquizofrenia/genética , Ratas Brattleboro , Inhibición Prepulso/fisiología , Reflejo de Sobresalto/genética , Apomorfina/farmacología , Dopamina , Modelos Animales de Enfermedad
7.
Behav Brain Res ; 437: 114113, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36108777

RESUMEN

Prepulse inhibition (PPI) allows assessing schizophrenia-like sensorimotor gating deficits in rodents. Previous studies indicate that PPI is modulated by the medial prefrontal cortex (mPFC), which is in agreement with our findings showing that PPI differences in the Roman rats are associated with divergences in mPFC activity. Here, we explore whether differences in PPI and mPFC activity in male Roman rats can be explained by (i) differences in the activation (c-Fos) of inhibitory neurons (parvalbumin (PV) interneurons); and/or (ii) reduced excitatory drive (PSD-95) to PV interneurons. Our data show that low PPI in the Roman high-avoidance (RHA) rats is associated with reduced activation of PV interneurons. Moreover, the RHA rats exhibit decreased density of both PV interneurons and PSD-95 puncta on active PV interneurons. These findings point to reduced cortical inhibition as a candidate to explain the schizophrenia-like features observed in RHA rats and support the role of impaired cortical inhibition in schizophrenia.


Asunto(s)
Interneuronas , Parvalbúminas , Corteza Prefrontal , Esquizofrenia , Filtrado Sensorial , Animales , Masculino , Ratas , Homólogo 4 de la Proteína Discs Large/metabolismo , Interneuronas/fisiología , Parvalbúminas/metabolismo , Corteza Prefrontal/fisiopatología , Ratas Endogámicas , Esquizofrenia/fisiopatología , Filtrado Sensorial/fisiología
8.
Behav Brain Res ; 434: 114021, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-35872331

RESUMEN

Neurodevelopmental anomalies are thought to play a crucial role in the emergence of schizophrenia. The Roman high-avoidance (RHA) rats exhibit impaired prepulse inhibition (PPI), as well as other behavioral and cognitive singularities related to schizophrenia syndromes compared to the Roman low-avoidance (RLA) rats. In the present study, we aimed at elucidating whether PPI deficits in the RHA rats take place during prepubescence, adolescence, or adulthood. Thus, we evaluated the levels of PPI of both strains and both sexes during these three developmental phases. Additionally, we also investigated the onset of startle habituation deficits in the same groups. The results showed that male RHA rats exhibit a clear-cut PPI reduction compared to their RLA counterparts in adulthood. In female RHA rats, we observed lower levels of PPI since adolescence and through adulthood. We also found no differences between PPI percentages among the three ages in RHA male rats. Contrarily, in male RLA rats, PPI levels were increased in adults compared to their adolescent and prepubescent counterparts. Finally, a deficit in startle habituation was observed in adulthood of both male and female RHA rats, although in the latter case the disturbance in startle habituation was more profound. These results further the description of the maturational trajectory of cognitive markers relevant to schizophrenia prodrome and they add face validity to the RHA rats as a model of schizophrenia-relevant phenotypes.


Asunto(s)
Habituación Psicofisiológica , Esquizofrenia , Animales , Reacción de Prevención , Femenino , Masculino , Inhibición Prepulso , Ratas , Reflejo de Sobresalto , Filtrado Sensorial
9.
Behav Processes ; 197: 104618, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35259448

RESUMEN

The acoustic startle response and prepulse inhibition (PPI) of startle are measures related to information processing, which is impaired in schizophrenia. Some studies have provided inconclusive patterns of association between both measures in rodents. We assessed the influence of baseline startle response on PPI in large samples of Roman high-(RHA) and low-avoidance (RLA) rat strains and in genetically heterogeneous stock (HS) rats. Results show that RHAs exhibit a PPI deficit compared to RLA rats, which is present regardless of the startle response levels. HS rats were stratified in two sub-samples according to their high or low PPI (HS-highPPI or HS-lowPPI, respectively) scores, and then they were grouped by their differential baseline startle amplitude (high reactivity -HR- or low reactivity -LR-) within each sub-sample. Differences between high- and low-PPI-stratified HS rats remained regardless of their high or low startle amplitude scores. Thus, the impairments in %PPI found in both RHA and HS-LowPPI rats are present irrespective of the relatively high or low levels of startle amplitude in pulse-alone trials. Another objective of the present study was to evaluate whether habituation to the startling stimulus (i.e., pulse) depends on the initial baseline startle response. RLA rats habituated to the startling stimulus more effectively than RHAs regardless of their baseline startle responses. Conversely, there were no differences in startle habituation in the HS rats grouped by their extreme scores of baseline startle. Altogether, these findings suggest a deficit in information processing in RHA rats, which along with evidence indicating that this strain displays other attentional/cognitive impairments, strengthens the validity of the RHA strain as a putative model of schizophrenia-relevant features.


Asunto(s)
Inhibición Prepulso , Esquizofrenia , Estimulación Acústica , Animales , Cognición , Habituación Psicofisiológica , Inhibición Prepulso/fisiología , Ratas , Reflejo de Sobresalto
10.
Physiol Behav ; 247: 113722, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35077728

RESUMEN

Social withdrawal is one of the most relevant negative symptoms of schizophrenia. Animal models that mimic schizophrenia's symptoms, in general, and negative symptoms, in particular, are difficult to develop because of the high complexity of symptoms and neurochemical disturbances that schizophrenia patients display throughout their lives. In recent years we have shown that Roman High-Avoidance (RHA) rats exhibit some phenotypes that are thought to represent positive symptoms, cognitive/attentional symptoms, as well as some negative symptoms of the disease. In the present study, we aimed at elucidating whether the social interaction (SI) deficits exhibited by adult male RHA rats, compared to their Roman Low-Avoidance (RLA) counterparts, are also present during adolescence, as well as whether there are between-strain differences in adolescent and adult female rats. The results of the present study show that adult male RHA rats exhibited a deficit in social preference compared to their RLA counterparts. Such a deficit was not observed in adolescent RHA rats or female rats of any age. The results also show that the adult male rats of both strains had significant decreases in social preference compared to the adolescent male rats. Additionally, we also show that female adult RHA rats have greater social preference than their male counterparts. These results seem to be in line with previous rodent and human studies and add face validity to the RHA rats as a model of schizophrenia.


Asunto(s)
Esquizofrenia , Adolescente , Animales , Reacción de Prevención , Femenino , Humanos , Masculino , Ratas , Trastorno de la Conducta Social , Interacción Social
11.
Neurosci Biobehav Rev ; 131: 597-617, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34571119

RESUMEN

The Roman High- (RHA) and Low-(RLA) avoidance rat lines/strains were generated through bidirectional selective breeding for rapid (RHA) vs. extremely poor (RLA) two-way active avoidance acquisition. Compared with RLAs and other rat strains/stocks, RHAs are characterized by increased impulsivity, deficits in social behavior, novelty-induced hyper-locomotion, impaired attentional/cognitive abilities, vulnerability to psychostimulant sensitization and drug addiction. RHA rats also exhibit decreased function of the prefrontal cortex (PFC) and hippocampus, increased functional activity of the mesolimbic dopamine system and a dramatic deficit of central metabotropic glutamate-2 (mGlu2) receptors (due to a stop codon mutation at cysteine 407 in Grm2 -cys407*-), along with increased density of 5-HT2A receptors in the PFC, alterations of several synaptic markers and increased density of pyramidal "thin" (immature) dendrític spines in the PFC. These characteristics suggest an immature brain of RHA rats, and are reminiscent of schizophrenia features like hypofrontality and disruption of the excitation/inhibition cortical balance. RHA rats represent a promising heuristic model of neurodevelopmental schizophrenia-relevant features and comorbidity with drug addiction vulnerability.


Asunto(s)
Conducta Adictiva , Esquizofrenia , Animales , Reacción de Prevención/fisiología , Heurística , Modelos Genéticos , Corteza Prefrontal , Ratas , Esquizofrenia/genética
12.
Physiol Behav ; 240: 113547, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34364851

RESUMEN

Prepulse inhibition (PPI) of the startle response is a measure of sensorimotor gating that is impaired in many clinical conditions, including schizophrenia. The inbred Roman high-avoidance (RHA) rats, compared to their low-avoidance (RLA) counterparts, show distinct schizophrenia-like phenotypes, such as spontaneous deficits in PPI accompanied by decreased medial prefrontal cortex (mPFC) activity and volume. Schizophrenia-like deficits are usually attenuated by antipsychotic drugs, but these drugs often produce severe side effects. In order to reduce these side effects, the neuropeptide oxytocin has been proposed as an alternative natural antipsychotic for schizophrenia. Here, we examined the effects of peripheral oxytocin administration (saline, 0.04, and 0.2 mg/kg) on PPI in the RHA vs. RLA rats, as well as in the outbred heterogeneous stock (HS) rats. Our results showed that oxytocin increased PPI in the HS rats and attenuated PPI deficits in the RHA rats, but it did not significantly affect PPI in the RLAs. To explore whether these divergent effects were associated with differences in oxytocinergic mechanisms, we analyzed gene expression of the oxytocin receptor (OXTR) and the regulator of oxytocin release (CD38) in the mPFC of the Roman rats. Consistent with the differential oxytocin effects on PPI (RHA > RLA), constitutive CD38 expression was reduced in the RHA rats compared to the RLAs, while oxytocin administration increased OXTR expression in both strains. Overall, the present work reveals that oxytocin administration shows antipsychotic-like effects on PPI in outbred and inbred rats, and it suggests that these effects may be related to basal differences in oxytocin-mediated mechanisms in the mPFC.


Asunto(s)
Esquizofrenia , Animales , Expresión Génica , Oxitocina/genética , Ratas , Ratas Endogámicas , Reflejo de Sobresalto , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/genética , Filtrado Sensorial
13.
Front Aging Neurosci ; 13: 683412, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34354580

RESUMEN

The increase of the aging population, where quite chronic comorbid conditions are associated with pain, draws growing interest across its investigation and the underlying nociceptive mechanisms. Burn injuries associated problems might be of relevance in the older adult's daily life, but in people with dementia, exposure to high temperatures and heat sources poses a significantly increased risk of burns. In this brief report, the hind paws and tail pain withdrawal reflexes and the emotional responses to thermal nociception in 3xTg-AD mice were characterized for the first time in the plantar test and compared to their non-transgenic (NTg) counterparts. We studied a cohort of male and female 3xTg-AD mice at asymptomatic (2 months), early (6 months), middle (9 months), and advanced (12 and 15 months) stages of the disease and as compared to sex- and age-matched NTg control mice with normal aging. At 20 and 40W intensities, the sensorial-discriminative thresholds eliciting the withdrawal responses were preserved from asymptomatic to advanced stages of the disease compared to NTg counterparts. Moreover, 3xTg-AD females consistently showed a greater sensory-discriminative sensitivity already at premorbid ages, whereas increased emotionality was shown in males. False-negative results were found in "blind to sex and age" analysis, warning about the need to study sexes independently. The current results and previous report in cold thermal stimulation provide two paradigms unveiling sex-specific early AD-phenotype nociceptive biomarkers to study the mechanistic underpinnings of sex-, age- and AD-disease-dependent thermal pain sensitivity.

14.
Behav Processes ; 188: 104397, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33887361

RESUMEN

The Roman-Low (RLA) and High-Avoidance (RHA) rat strains have been bidirectionally selected and bred, respectively, for extremely poor vs. rapid acquisition of the two-way active avoidance task. Over 50 years of selective breeding have led to two strains displaying many differential specific phenotypes. While RLAs display anxious-related behaviours, RHA rats show impulsivity, and schizophrenia-like positive and cognitive symptoms or phenotypes. Neonatal handling (NH) is an environmental treatment with long-lasting anxiolytic-like and anti-stress effects. NH also reduces symptoms related to schizophrenia, such as pre-pulse inhibition (PPI) impairment and latent inhibition (LI) deficits, and improves spatial working memory and cognitive flexibility. The present work was aimed at exploring whether RHAs also display negative schizophrenia-like symptoms (or phenotypes), such as lowered preference for social interaction (i.e. asociality), and whether NH would reduce these deficits. To this aim, we evaluated naïve inbred RHA and RLA rats in a social interaction (SI) test after either long- or short-term habituation to the testing set up (studies 1-2). In Study 3 we tested untreated and NH-treated RHA and RLA rats in novel object exploration (NOE) and SI tests. Compared with RHAs, RLA rats displayed increased anxiety-related behaviours in the NOE (i.e. higher behavioural inhibition, lesser exploration of the novel object) and SI (i.e. higher levels of self-grooming) tests which were dramatically reduced by NH treatment, thus supporting the long-lasting anxiolytic-like effect of NH. Remarkably, RHA rats showed decreased social preference in the SI test compared with RLAs, evidencing that RHAs would present a relative asociality, which is thought to model some negative symptomatology (i.e. social withdrawal) of schizophrenia. NH increased absolute levels of social behaviour in both strains, but with a more marked effect in RHA rats, especially in the first 5 min of the SI test. Thus, it is hypothesized that, apart from its effects on anxiety-related behaviours, NH might have long-lasting positive effects on behavioural and neurobiological processes that are impaired in schizophrenia.


Asunto(s)
Esquizofrenia , Animales , Ansiedad , Reacción de Prevención , Inhibición Prepulso , Ratas , Interacción Social
15.
Behav Processes ; 177: 104142, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32454181

RESUMEN

The forced swimming test (FST) and helplessness reactions at two-way active escape/avoidance task are used in the study of depressive-like symptoms and antidepressant treatments in rodents. In both tests/tasks the animals are submitted to stressful situations, known to induce several responses that have been considered as parallels of some symptoms of the human depressive disorder. However, there is a lack of experimental evidence supporting associations between the behavioral responses displayed in both behavioral procedures by outbred rats. The objective of the present study was to evaluate the possible associations between the behavioral responses in both depression models using the National Institutes of Health genetically heterogeneous rat stock (i.e. NIH-HS rats). To this aim, 97 NIH-HS rats were submitted to both behavioral procedures (FST and two-way active escape task under a fixed ratio 2 - FR2). The statistical analyses comparing the sub-groups of rats selected by their high or low behavioral responses in either the FST or the FR2 helplessness task showed associations between the responses evaluated in both tests. Specifically, higher levels of struggling (i.e. vigorous swimming directed to escape from the FST) or less time of immobility in the first session of FST predicted lesser response failures in the FR2 two-way active escape (helplessness) task. In parallel, the stratification of rats for their high or low scores of response failures in the FR2 task was predictive of their levels of struggling in the FST. Thus, it is demonstrated for the first time that passive coping responses in one test are predictive of similar coping styles in the other task. The present findings may be relevant for the concurrent validity of both depression models.


Asunto(s)
Depresión , Natación , Adaptación Psicológica , Animales , Antidepresivos , Modelos Animales de Enfermedad , Ratas
16.
Neuropsychopharmacology ; 44(11): 1975-1984, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30986819

RESUMEN

Prepulse inhibition (PPI) of startle response is a measure of sensorimotor gating that is impaired in schizophrenia and in many other clinical conditions. Rat models using pharmacological or surgical strategies reveal that PPI is modulated by the cortico-striatal-pallido-thalamic (CSPT) circuit. Here, we explore whether spontaneous variation in PPI in intact inbred and outbred rats is associated with functional and structural differences in the CSPT circuit. Inbred Roman High-(RHA) and Low-avoidance (RLA) and outbred heterogeneous stock (HS) rats were assessed for PPI, brain activity, and brain volume. Brain activity was assessed by c-Fos expression and brain volume by magnetic resonance imaging. Relevant structures of the CSPT circuit were evaluated, such as the medial prefrontal cortex (mPFC), cingulate cortex, hippocampus (HPC), amygdala, nucleus accumbens (NAc), and dorsal striatum. RHA showed lower PPI than RLA rats, while HS rats were stratified by their PPI levels in three groups. Reduced PPI was accompanied by decreased mPFC activity in Roman and HS rats and increased NAc shell activity in HS rats. Low PPI was also associated with decreased mPFC and HPC volumes in Roman and HS rats. This study reports a consistent relationship between decreased function and volume of the mPFC and spontaneous low-PPI levels in inbred and outbred intact rats. Moreover, our findings suggest that, apart from a hypoactive and smaller mPFC, a hyperactive NAc and smaller HPC may underlie reduced PPI levels. Our results support the notion that sensorimotor gating is modulated by forebrain structures and highlight the importance of the mPFC in its regulation.


Asunto(s)
Corteza Prefrontal/diagnóstico por imagen , Inhibición Prepulso/fisiología , Esquizofrenia/diagnóstico por imagen , Filtrado Sensorial/fisiología , Animales , Imagen por Resonancia Magnética , Masculino , Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Reflejo de Sobresalto/fisiología , Esquizofrenia/metabolismo
17.
Behav Brain Res ; 361: 74-85, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30576720

RESUMEN

The present study was aimed at evaluating whether the differences between the Roman high- (RHA) and low-avoidance (RLA) rat strains in novelty-induced behavioural inhibition/disinhibition, sensorimotor gating (i.e., prepulse inhibition, PPI) and spatial learning/memory parallel differences in the volume of brain areas related to those behavioural phenotypes. To this aim, we conducted two experiments. In Experiment 1, we evaluated the performance of adult rats from both strains, either untreated (controls) or treated with neonatal handling (NH; administered during the first 21 days of life), in a novel object exploration test (NOE), in the elevated zero-maze test (ZM) of anxiety, and in a PPI test; moreover, magnetic resonance imaging (MRI) was used to measure the volume of limbic and cortical brain regions (amygdala -Am-, hippocampus -Hc-, striatum -St-, medial prefrontal cortex -mPFc-, anterior cingulate cortex -ACC-, nucleus accumbens -NAc-) and lateral ventricles -LV-. In Experiment 2, adult rats neonatally exposed to NH and their naïve controls were submitted to the NOE and PPI tests, and to several spatial learning/memory tasks using the Morris water maze. It was found that, compared with their RLA counterparts, RHA rats show increased exploration of the novel object in the NOE test, lowered anxiety in the ZM and impaired PPI, whereas RLAs display better spatial reference learning and memory and better cognitive flexibility in a reversal task. Furthermore, MRI measurements revealed that the volume of Hc, Am and mPFc is larger in RLA vs. RHA rats, whereas the latter have dramatically enlarged lateral ventricles. NH treatment markedly enhanced exploration in the NOE test in RLA rats, improved PPI in RHA rats but impaired it in their RLA counterparts, and produced beneficial effects on spatial working memory mainly in RHA rats. Finally, exposure to NH decreased the volume of Hc and Am in the RLA strain. The results are discussed in terms of the possible relationships between strain-related volumetric brain differences and the behavioral (anxiety-related and schizophrenia-relevant) traits that distinguish RHA from RLA rats, and highlighting the finding that, in RLA rats, NH is for the first time shown to enduringly reduce the volume of Hc and Am in parallel to the decrease of anxiety and the impairment of sensorimotor gating.


Asunto(s)
Encéfalo/patología , Hipocampo/patología , Tacto/fisiología , Amígdala del Cerebelo/fisiología , Animales , Ansiedad/genética , Ansiedad/fisiopatología , Reacción de Prevención/fisiología , Conducta Animal/fisiología , Encéfalo/fisiología , Cognición/fisiología , Conducta Exploratoria/fisiología , Hipocampo/fisiología , Masculino , Memoria a Corto Plazo/fisiología , Inhibición Prepulso/fisiología , Ratas , Ratas Endogámicas , Filtrado Sensorial/genética , Aprendizaje Espacial/fisiología
18.
G3 (Bethesda) ; 8(10): 3283-3291, 2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30135107

RESUMEN

In this study we investigate the effects of parent of origin on complex traits in the laboratory rat, with a focus on coping style behavior in stressful situations. We develop theory, based on earlier work, to partition heritability into a component due to a combination of parent of origin, maternal, paternal and shared environment, and another component that estimates classical additive genetic variance. We use this theory to investigate the effects on heritability of the parental origin of alleles in 798 outbred heterogeneous stock rats across 199 complex traits. Parent-of-origin-like heritability was on average 2.7fold larger than classical additive heritability. Among the phenotypes with the most enhanced parent-of-origin heritability were 10 coping style behaviors, with average 3.2 fold heritability enrichment. To confirm these findings on coping behavior, and to eliminate the possibility that the parent of origin effects are due to confounding with shared environment, we performed a reciprocal F1 cross between the behaviorally divergent RHA and RLA rat strains. We observed parent-of-origin effects on F1 rat anxiety/coping-related behavior in the Elevated Zero Maze test. Our study is the first to assess genetic parent-of-origin effects in rats, and confirm earlier findings in mice that such effects influence coping and impulsive behavior, and suggest these effects might be significant in other mammals, including humans.


Asunto(s)
Adaptación Psicológica , Conducta Animal , Herencia Multifactorial , Algoritmos , Animales , Patrón de Herencia , Modelos Genéticos , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Ratas , Estrés Psicológico
19.
Mol Neurobiol ; 55(3): 1998-2012, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28265857

RESUMEN

The serotonin 2A (5-HT2A) and metabotropic glutamate 2 (mGlu2) receptors regulate each other and are associated with schizophrenia. The Roman high- (RHA-I) and the Roman low- (RLA-I) avoidance rat strains present well-differentiated behavioral profiles, with the RHA-I strain emerging as a putative genetic rat model of schizophrenia-related features. The RHA-I strain shows increased 5-HT2A and decreased mGlu2 receptor binding levels in prefrontal cortex (PFC). Here, we looked for differences in gene expression and transcriptional regulation of these receptors. The striatum (STR) was included in the analysis. 5-HT2A, 5-HT1A, and mGlu2 mRNA and [3H]ketanserin binding levels were measured in brain homogenates. As expected, 5-HT2A binding was significantly increased in PFC in the RHA-I rats, while no difference in binding was observed in STR. Surprisingly, 5-HT2A gene expression was unchanged in PFC but significantly decreased in STR. mGlu2 receptor gene expression was significantly decreased in both PFC and STR. No differences were observed for the 5-HT1A receptor. Chromatin immunoprecipitation assay revealed increased trimethylation of histone 3 at lysine 27 (H3K27me3) at the promoter region of the HTR2A gene in the STR. We further looked at the Akt/GSK3 signaling pathway, a downstream point of convergence of the serotonin and glutamate system, and found increased phosphorylation levels of GSK3ß at tyrosine 216 and increased ß-catenin levels in the PFC of the RHA-I rats. These results reveal region-specific regulation of the 5-HT2A receptor in the RHA-I rats probably due to absence of mGlu2 receptor that may result in differential regulation of downstream pathways.


Asunto(s)
Reacción de Prevención/fisiología , Epigénesis Genética/fisiología , Regiones Promotoras Genéticas/fisiología , Receptor de Serotonina 5-HT2A/biosíntesis , Receptores de Glutamato Metabotrópico/biosíntesis , Animales , Expresión Génica , Masculino , Ratas , Ratas Transgénicas , Receptor de Serotonina 5-HT2A/genética , Receptores de Glutamato Metabotrópico/genética , Especificidad de la Especie
20.
Behav Genet ; 47(5): 537-551, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28714052

RESUMEN

The Roman high- (RHA-I) and low-avoidance (RLA-I) rat strains are bi-directionally bred for their good versus non-acquisition of two-way active avoidance, respectively. They have recently been re-derived through embryo transfer (ET) to Sprague-Dawley females to generate specific pathogen free (SPF) RHA-I/RLA-I rats. Offspring were phenotyped at generations 1 (G1, born from Sprague-Dawley females), 3 and 5 (G3 and G5, born from RHA-I and RLA-I from G2-G4, respectively), and compared with generation 60 from our non-SPF colony. Phenotyping included two-way avoidance acquisition, context-conditioned fear, open-field behaviour, novelty-seeking, baseline startle, pre-pulse inhibition (PPI) and stress-induced increase in plasma corticosterone concentration. Post-ET between-strain differences in avoidance acquisition, context-conditioned freezing and novelty-induced self-grooming are conserved. Other behavioural traits (i.e. hole-board head-dipping, novel object exploration, open-field activity, startle, PPI) differentiate the strains at G3-G5 but not at G1, suggesting that the pre-/post-natal environment may have influenced these co-segregated traits at G1, though further selection pressure along the subsequent generations (G1-G5) rescues the typical strain-related differences.


Asunto(s)
Reacción de Prevención/fisiología , Conducta Exploratoria/fisiología , Animales , Ansiedad , Corticosterona/sangre , Modelos Animales de Enfermedad , Transferencia de Embrión , Femenino , Masculino , Fenotipo , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA