Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Lett ; 565: 216237, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37211067

RESUMEN

Small-molecule EGFR inhibitors have distinctly improved the overall survival especially in EGFR-mutated lung cancer. However, their use is often limited by severe adverse effects and rapid resistance development. To overcome these limitations, a hypoxia-activatable Co(III)-based prodrug (KP2334) was recently synthesized releasing the new EGFR inhibitor KP2187 in a highly tumor-specific manner only in hypoxic areas of the tumor. However, the chemical modifications in KP2187 necessary for cobalt chelation could potentially interfere with its EGFR-binding ability. Consequently, in this study, the biological activity and EGFR inhibition potential of KP2187 was compared to clinically approved EGFR inhibitors. In general, the activity as well as EGFR binding (shown in docking studies) was very similar to erlotinib and gefitinib (while other EGFR-inhibitory drugs behaved different) indicating no interference of the chelating moiety with the EGFR binding. Moreover, KP2187 significantly inhibited cancer cell proliferation as well as EGFR pathway activation in vitro and in vivo. Finally, KP2187 proved to be highly synergistic with VEGFR inhibitors such as sunitinib. This indicates that KP2187-releasing hypoxia-activated prodrug systems are promising candidates to overcome the clinically observed enhanced toxicity of EGFR-VEGFR inhibitor combination therapies.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Profármacos , Humanos , Profármacos/farmacología , Profármacos/uso terapéutico , Receptores ErbB/metabolismo , Inhibidores de Proteínas Quinasas/uso terapéutico , Clorhidrato de Erlotinib/farmacología , Neoplasias Pulmonares/metabolismo , Proliferación Celular , Hipoxia/metabolismo , Línea Celular Tumoral , Antineoplásicos/uso terapéutico
2.
Curr Microbiol ; 73(2): 172-82, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27107760

RESUMEN

In recent years, Candida albicans infections treatment has become a growing problem because, among others, pathogenic strains are capable to develop resistance to the administered drugs. The elaboration of rapid and accurate method of resistance assessment is an important goal of many studies. They aim to avoid inappropriate dosage or drug choice, which may be life threatening in case of severe candidiasis. Here we propose a new protocol to predict C. albicans infections. The resistance prediction is based on high-resolution melt (HRM) analysis of ERG11 gene, especially, at the particularly unstable regions. Two statistically significant nucleotide polymorphisms were detected among twenty-seven strains isolated from saliva, one of which was silent mutation (Glu266Asp, Leu480Leu). We propose also HRM analysis as a convenient, simple and inexpensive method of preliminary selection of C. albicans DNA samples that vary in ERG11 nucleotide sequence within presumed region. Taken together, our study provides firm basis for the development of fast, simple and reliable methodology for diagnosis of C. albicans infections.


Asunto(s)
Antifúngicos/farmacología , Azoles/farmacología , Candida albicans/efectos de los fármacos , Candida albicans/enzimología , Candidiasis/microbiología , Sistema Enzimático del Citocromo P-450/genética , Farmacorresistencia Fúngica , Proteínas Fúngicas/genética , Candida albicans/genética , Candida albicans/metabolismo , ADN de Hongos/química , ADN de Hongos/genética , Humanos , Mutación Puntual , Reacción en Cadena de la Polimerasa , Polimorfismo Genético , Temperatura de Transición
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...