Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Braz J Microbiol ; 55(1): 1023-1028, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38200375

RESUMEN

The mechanism of colonisation of the chicken intestine by Salmonella remains poorly understood, while the severity of infections vary enormously depending on the serovar and the age of the bird. Several metabolism and virulence genes have been identified in Salmonella Heidelberg; however, information on their roles in infection, particularly in the chicken infection model, remains scarce. In the present publication, we investigated three Salmonella Heidelberg mutants containing deletions in misL, ssa, and pta-ackA genes by using signature-tagged mutagenesis. We found that mutations in these genes of S. Heidelberg result in an increase in fitness in the chicken model. The exception was perhaps the pta-ackA mutant where colonisation was slightly reduced (2, 7, 14, and 21 days post-infection) although some birds were still excreting at the end of the experiment. Our results suggest that for intestinal colonisation of the chicken caecum, substrate-level phosphorylation is likely to be more important than the MisL outer membrane protein or even the secretion system apparatus. These findings validate previous work that demonstrated the contribution of ackA and pta mutants to virulence in chickens, suggesting that the anaerobic metabolism genes such as pta-ackA could be a promising mitigation strategy to reduce S. Heidelberg virulence.


Asunto(s)
Pollos , Salmonelosis Animal , Animales , Fosforilación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Fosfato Acetiltransferasa/genética , Fosfato Acetiltransferasa/metabolismo , Anaerobiosis , Virulencia , Salmonella , Salmonelosis Animal/microbiología
2.
Microb Pathog ; 171: 105725, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36007847

RESUMEN

Among the important recent observations involving anaerobic respiration was that an electron acceptor produced as a result of an inflammatory response to Salmonella Typhimurium generates a growth advantage over the competing microbiota in the lumen. In this regard, anaerobically, salmonellae can oxidize thiosulphate (S2O32-) converting it into tetrathionate (S4O62-), the process by which it is encoded by ttr gene cluster (ttrSRttrBCA). Another important pathway under aerobic or anaerobic conditions is the 1,2-propanediol-utilization mediated by the pdu gene cluster that promotes Salmonella expansion during colitis. Therefore, we sought to compare in this study, whether Salmonella Heidelberg strains lacking the ttrA, ttrApduA, and ttrACBSR genes experience a disadvantage during cecal colonization in broiler chicks. In contrast to expectations, we found that the gene loss in S. Heidelberg potentially confers an increase in fitness in the chicken infection model. These data argue that S. Heidelberg may trigger an alternative pathway involving the use of an alternative electron acceptor, conferring a growth advantage for S. Heidelberg in chicks.


Asunto(s)
Pollos , Salmonelosis Animal , Animales , Pollos/metabolismo , Propilenglicol/metabolismo , Salmonella , Salmonella typhimurium , Tiosulfatos
3.
ACS Infect Dis ; 8(3): 472-481, 2022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35230825

RESUMEN

Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis) in poultry is most often transmitted by the fecal-oral route, which can be attributed to high population density. Upon encountering the innate immune response in a host, the pathogen triggers a stress response and virulence factors to help it survive in the host. The aim of this study was to evaluate the effect of hypromellose acetate/succinate (HPMCAS)-coated alginate microparticles containing the Ctx(Ile21)-Ha antimicrobial peptide (AMP) on both intestinal colonization and systemic infection of laying hens challenged with S. Enteritidis. The applied AMP microsystem reduced the bacterial load of S. Enteritidis in the liver, with a statistical significance between groups A (control, no Ctx(Ile21)-Ha peptide) and B (2.5 mg of Ctx(Ile21)-Ha/kg) at 2 days postinfection (dpi), potentially indicating the effectiveness of Ctx(Ile21)-Ha in the first stage of infection by S. Enteritidis. In addition, the results showed a significant decrease in the S. Enteritidis counts in the spleen and cecal content at 5 dpi; remarkably, no S. Enteritidis counts were observed in livers at 5, 7, and 14 dpi, regardless of the Ctx(Ile21)-Ha dosage (p-value <0.0001). Using the Chi-square test, the effect of AMP microparticles on S. Enteritidis fecal excretion was also evaluated, and a significantly lower bacterial excretion was observed over 21 days in groups B and C, in comparison with the untreated control (p-value <0.05). In summary, the use of HPMCAS-Ctx(Ile21)-Ha peptide microcapsules in laying hens drastically reduced the systemic infection of S. Enteritidis, mainly in the liver, indicating a potential for application as a feed additive against this pathogen.


Asunto(s)
Antiinfecciosos , Salmonelosis Animal , Alginatos , Animales , Pollos/microbiología , Pollos/fisiología , Femenino , Metilcelulosa/análogos & derivados , Salmonelosis Animal/tratamiento farmacológico , Salmonelosis Animal/microbiología , Salmonella enteritidis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA