Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; : 136222, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39362422

RESUMEN

Biofilms are the most common lifestyle adopted by bacterial communities where cells live embedded in a self-produced hydrated matrix. Although polysaccharides are considered essential for matrix architecture, their possible functional roles are still rather unexplored. The primary structure of polysaccharides produced by Klebsiella pneumoniae and species of the Burkholderia cepacia Complex revealed a composition rich in rhamnose. The methyl group on carbon 6 of rhamnose units lowers the polymer hydrophilicity and can form low polarity regions on the polysaccharide chains. These regions promote chain-chain interactions that contribute to the biofilm matrix stability, but may also act as binding sites for low-polarity molecules, aiding their mobility through the hydrated matrix. In particular, quorum sensing system components crucial for the biofilm life cycle often display poor solubility in water. Therefore, cis-11-methyl-2-dodecenoic acid and L-homoserine-lactones were investigated by NMR spectroscopy for their possible interaction with polysaccharides. In addition, the macromolecular morphology of the polysaccharides was assessed using atomic force and electron microscopies to define the role of Rha residues on the three-dimensional conformation of the polymer. NMR data revealed that quorum sensing components interact with Rhamnose-rich polysaccharides, and the extent of interaction depends on the specific primary structure of each polysaccharide.

2.
Chemistry ; : e202401944, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150693

RESUMEN

Fast and sensitive quantification of drugs as emerging pollutants in water bodies is a pressing need in contemporary society, to prevent serious environmental concerns that could negatively impact on human health. This explains the surge of interest in this field, and the need to identify highly selective sensing systems. Addressing this issue, in this work we synthesized two D-glucamine functionalized fluorophores bearing self-assembling cores, as 1,8-naphthalimide and naphthalene diimide. We studied their self-assembly in water solution, and characterized the aggregated formed by determining their stability constant, their morphology and size by scanning electron microscopy, resonance light scattering and dynamic light scattering, as well their solid-state emission ability. Then, we studied their sensing ability, in water, towards pharmaceutically active compounds such as ciprofloxacin, nalidixic acid, carbamazepine and diclofenac sodium salt, by fluorescence investigation. Data collected show that the self-assembling ability is significantly affected by the fluorophore structure, which in turn also determines sensing ability. In particular, the naphtalene diimide-based probe was the most sensitive, with LOD as low as 0.01 mM in the presence of nalidixic acid, which is in line and competitive with more complex sensing systems, recently reported in the literature.

3.
Int J Biol Macromol ; 253(Pt 6): 127294, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37813217

RESUMEN

Bacteria form very often biofilms where they embed in a self-synthesized matrix exhibiting a gel-like appearance. Matrices offer several advantages, including defence against external threats and the easiness of intercellular communication. In infections, biofilm formation enhances bacteria resistance against antimicrobials, causing serious clinical problems for patients' treatments. Biofilm matrices are composed of proteins, extracellular DNA, and polysaccharides, the latter being the major responsible for matrix architecture. The repeating unit of the biofilm polysaccharide synthesized by Burkholderia multivorans strain C1576 contains two mannoses and two sequentially linked rhamnoses, one of them 50 % methylated on C-3. Rhamnose, a 6-deoxysugar, has lower polarity than other common monosaccharides and its methylation further reduces polarity. This suggests a possible role of this polysaccharide in the biofilm matrix; in fact, computer modelling and atomic force microscopy studies evidenced intra- and inter-molecular non-polar interactions both within polysaccharides and with aliphatic molecules. In this paper, the polysaccharide three-dimensional morphology was investigated using atomic force microscopy in both solid and solution states. Independent evidence of the polymer conformation was obtained by transmission electron microscopy which confirmed the formation of globular compact structures. Finally, data from computer dynamic simulations were used to model the three-dimensional structure.


Asunto(s)
Burkholderia , Polisacáridos Bacterianos , Humanos , Polisacáridos Bacterianos/química , Burkholderia/metabolismo , Biopelículas , Microscopía de Fuerza Atómica
4.
Mater Today Bio ; 16: 100286, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36186846

RESUMEN

Irinotecan (CTP-11) is one of the standard therapies for colorectal cancer (CRC). CTP-11 is enzymatically converted to the hydrophobic 7-ethyl-10-hydroxycamptothecin (SN38), a one hundred-fold more active metabolite. Conjugation of hydrophobic anticancer drugs to nanomaterials is a strategy to improve their solubility, efficacy, and selectivity. Carbon dots (CDs) have garnered interest for their small sizes (<10 â€‹nm), low toxicity, high water solubility, and bright fluorescence. This paper describes the use of CDs to improve drug vehiculation, stability, and chemotherapeutic efficiency of SN38 through a direct intracellular uptake in CRC. The covalent conjugation of SN38 to CDs via a carbamate bond provides a CD-SN38 hybrid material for slow, sustained, and pH-responsive drug release. CD-SN38 successfully penetrates the CRC cells with a release in the nucleus affecting first the cell cycle and then the cytoskeleton. Moreover, CD-SN38 leads to a deregulation of the extracellular matrix (ECM), one of the major components of the cancer niche considered a possible target therapy for reducing the cancer progression. This work shows the combined therapeutic and imaging potential of CD-based hybrid materials for the treatment of CRC. Future efforts for targeted therapy of chronic diseases characterized by altered ECM deposition, such as chronic kidney disease and chronic allograft nephropathy in kidney transplant patients are envisaged.

5.
Nat Nanotechnol ; 17(2): 112-130, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35173327

RESUMEN

Photoluminescent carbon nanoparticles, or carbon dots, are an emerging class of materials that has recently attracted considerable attention for biomedical and energy applications. They are defined by characteristic sizes of <10 nm, a carbon-based core and the possibility to add various functional groups at their surface for targeted applications. These nanomaterials possess many interesting physicochemical and optical properties, which include tunable light emission, dispersibility and low toxicity. In this Review, we categorize how chemical tools impact the properties of carbon dots. We look for pre- and postsynthetic approaches for the preparation of carbon dots and their derivatives or composites. We then showcase examples to correlate structure, composition and function and use them to discuss the future development of this class of nanomaterials.


Asunto(s)
Investigación Biomédica/tendencias , Carbono/química , Nanoestructuras/química , Puntos Cuánticos/química , Sustancias Luminiscentes/química
6.
Nat Commun ; 12(1): 7208, 2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34893594

RESUMEN

Carbon nanodots with opposite chirality possess the same major physicochemical properties such as optical features, hydrodynamic diameter, and colloidal stability. Here, a detailed analysis about the comparison of the concentration of both carbon nanodots is carried out, putting a threshold to when differences in biological behavior may be related to chirality and may exclude effects based merely on differences in exposure concentrations due to uncertainties in concentration determination. The present study approaches this comparative analysis evaluating two basic biological phenomena, the protein adsorption and cell internalization. We find how a meticulous concentration error estimation enables the evaluation of the differences in biological effects related to chirality.


Asunto(s)
Fenómenos Biológicos , Carbono/química , Nanopartículas/química , Adsorción , Materiales Biocompatibles , Células HeLa , Humanos , Células THP-1
7.
Adv Sci (Weinh) ; 8(13): 2100125, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34258161

RESUMEN

Carbon dots (CDs), defined by their size of less than 10 nm, are a class of photoluminescent (PL) and electrochemiluminescent (ECL) nanomaterials that include a variety of carbon-based nanoparticles. However, the control of their properties, especially ECL, remains elusive and afflicted by a series of problems. Here, the authors report CDs that display ECL in water via coreactant ECL, which is the dominant mechanism in biosensing applications. They take advantage of a multicomponent bottom-up approach for preparing and studying the luminescence properties of CDs doped with a dye acting as PL and ECL probe. The dependence of luminescence properties on the surface chemistry is further reported, by investigating the PL and ECL response of CDs with surfaces rich in primary, methylated, or propylated amino groups. While precursors that contribute to the core characterize the PL emission, the surface states influence the efficiency of the excitation-dependent PL emission. The ECL emission is influenced by surface states from the organic shell, but states of the core strongly interact with the surface, influencing the ECL efficiency. These findings offer a framework of pre- and post-synthetic design strategies to improve ECL emission properties, opening new opportunities for exploring biosensing applications of CDs.

8.
Angew Chem Int Ed Engl ; 59(31): 12779-12784, 2020 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-32282973

RESUMEN

Carbon dots (CDs) and their derivatives are useful platforms for studying electron-donor/acceptor interactions and dynamics therein. Herein, we couple amorphous CDs with phthalocyanines (Pcs) that act as electron donors with a large extended π-surface and intense absorption across the visible range of the solar spectrum. Investigations of the intercomponent interactions by means of steady-state and pump-probe transient absorption spectroscopy reveal symmetry-breaking charge transfer/separation and recombination dynamics within pairs of phthalocyanines. The CDs facilitate the electronic interactions between the phthalocyanines. Thus, our findings suggest that CDs could be used to support electronic couplings in multichromophoric systems and further increase their applicability in organic electronics, photonics, and artificial photosynthesis.

9.
Nat Commun ; 9(1): 3442, 2018 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-30143608

RESUMEN

The chirality of (nano)structures is paramount in many phenomena, including biological processes, self-assembly, enantioselective reactions, and light or electron spin polarization. In the quest for new chiral materials, metallo-organic hybrids have been attractive candidates for exploiting the aforementioned scientific fields. Here, we show that chiral carbon nanoparticles, called carbon nanodots, can be readily prepared using hydrothermal microwave-assisted synthesis and easily purified. These particles, with a mean particle size around 3 nm, are highly soluble in water and display mirror-image profile both in the UV-Vis and in the infrared regions, as detected by electronic and vibrational circular dichroism, respectively. Finally, the nanoparticles are used as templates for the formation of chiral supramolecular porphyrin assemblies, showing that it is possible to use and transfer the chiral information. This simple (and effective) methodology opens up exciting opportunities for developing a variety of chiral composite materials and applications.

10.
J Mater Chem B ; 6(35): 5540-5548, 2018 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32254964

RESUMEN

Carbon nanodots (CNDs) hold great potential in imaging and drug delivery applications. In this study, nitrogen-doped CNDs (NCNDs) were coupled to the anticancer agent paclitaxel (PTX) through a labile ester bond. NCNDs showed excellent cell viability and endowed the NCND-PTX conjugate with good water solubility. The hybrid integrates the optical properties of the nanodots with the anticancer function of the drug into a single unit. Cytotoxicity was evaluated in breast, cervix, lung, and prostate cancer cell lines by the MTT assay while the cellular uptake was monitored using confocal microscopy. NCND-PTX induced apoptosis in cancer cells exhibiting slightly better anticancer activity compared to the drug alone. Moreover, the course of the NCND-PTX interaction with cancer cells was monitored using an xCELLigence system. The NCND-based conjugate represents a promising platform for bioimaging and drug delivery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...