Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 66(18): 12858-12876, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37708305

RESUMEN

From our NETSseq-derived human brain transcriptomics data, we identified GPR55 as a potential molecular target for the treatment of motor symptoms in patients with Parkinson's disease. From a high-throughput screen, we identified and optimized agonists with nanomolar potency against both human and rat GPR55. We discovered compounds with either strong or limited ß-arrestin signaling and receptor desensitization, indicating biased signaling. A compound that showed minimal GPR55 desensitization demonstrated a reduction in firing frequency of medium spiny neurons cultured from rat striatum but did not reverse motor deficits in a rat hypolocomotion model. Further profiling of several desensitizing and non-desensitizing lead compounds showed that they are selective over related cannabinoid receptors CB1 and CB2 and that unbound brain concentrations well above the respective GPR55 EC50 can be readily achieved following oral administration. The novel brain-penetrant GPR55 agonists disclosed can be used to probe the role of this receptor in the brain.


Asunto(s)
Agonistas de Receptores de Cannabinoides , Transducción de Señal , Humanos , Ratas , Animales , Receptores de Cannabinoides , beta-Arrestinas , Cuerpo Estriado/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptor Cannabinoide CB2 , Receptor Cannabinoide CB1
2.
Neuropharmacology ; 224: 109330, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36375694

RESUMEN

Neuroinflammation, specifically the NLRP3 inflammasome cascade, is a common underlying pathological feature of many neurodegenerative diseases. Evidence suggests that NLRP3 activation involves changes in intracellular K+. Nuclear Enriched Transcript Sort Sequencing (NETSseq), which allows for deep sequencing of purified cell types from human post-mortem brain tissue, demonstrated a highly specific expression of the tandem pore domain halothane-inhibited K+ channel 1 (THIK-1) in microglia compared to other glial and neuronal cell types in the human brain. NETSseq also showed a significant increase of THIK-1 in microglia isolated from cortical regions of brains with Alzheimer's disease (AD) relative to control donors. Herein, we report the discovery and pharmacological characterisation of C101248, the first selective small-molecule inhibitor of THIK-1. C101248 showed a concentration-dependent inhibition of both mouse and human THIK-1 (IC50: ∼50 nM) and was inactive against K2P family members TREK-1 and TWIK-2, and Kv2.1. Whole-cell patch-clamp recordings of microglia from mouse hippocampal slices showed that C101248 potently blocked both tonic and ATP-evoked THIK-1 K+ currents. Notably, C101248 had no effect on other constitutively active resting conductance in slices from THIK-1-depleted mice. In isolated microglia, C101248 prevented NLRP3-dependent release of IL-1ß, an effect not seen in THIK-1-depleted microglia. In conclusion, we demonstrated that inhibiting THIK-1 (a microglia specific gene that is upregulated in brains from donors with AD) using a novel selective modulator attenuates the NLRP3-dependent release of IL-1ß from microglia, which suggests that this channel may be a potential therapeutic target for the modulation of neuroinflammation in AD.


Asunto(s)
Enfermedad de Alzheimer , Inflamasomas , Canales de Potasio de Dominio Poro en Tándem , Animales , Humanos , Ratones , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Inflamasomas/metabolismo , Microglía , Enfermedades Neuroinflamatorias , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...