RESUMEN
BACKGROUND: Within the framework of sustainable and effective control methods for Aedes albopictus, two different conidial suspensions, BbCS-1 and BbCS-2 (respectively without and with nutrients), were used as solvents for the biopolymers water-soluble 2-hydroxyethylcellulose (HEC) and sodium alginate (SA). In this way, two different classes of hydrogels were prepared for each polymer (previously shown to attract tiger mosquito oviposition) to produce HEC-based and SA-based Bb/Gel systems with and without nutrients. The aim was to achieve a long-lasting and cost-effective lure-and-kill oviposition substrate useful for lethal ovitraps. Beauveria bassiana (Bb) survival and growth in the different Bb/Gel systems were monitored for 24 days. Following the growth assay, 24-day-old Bb/Gel systems were tested against Ae. albopictus eggs through a hatching test to evaluate their lethal effect. RESULTS: Gel systems enhance Bb's longevity (up to 24 days) more effectively than standard liquid conidial suspensions, proving that tested HEC- and SA-based hydrogels are not toxic for Bb (biocompatibility) and create a microenvironment suitable to sustain prolonged fungal growth. In particular, the results indicate that gel system based on hydroxyethylcellulose is a suitable delivery substrate for supporting the activity of Bb and is simultaneously effective against Ae. albopictus eggs through a combined mechanism of mechanical effect and fungal action (CM > 90%). CONCLUSION: The efficacy of Bb gel systems was assessed according to its properties in favouring the growth and vitality of Bb as well as in reducing the Ae. albopictus hatching eggs rate. Further studies, in semi-field and field conditions, will be useful to evaluate the efficacy of Bb/Gel systems on adults in terms of attraction, oviposition, mortality, and potential autodissemination to propose a new tool in precision pest management. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
RESUMEN
Reptiles in the wild or as pets may act as spreaders of bacteria, viruses, fungi and parasites. However, studies on the mycobiota of these animals are scanty. This study investigates the occurrence of yeasts from the cloacal swabs of snakes of different origins and the antifungal profile of the isolated strains. A total of 180 cloacal samples of snakes were collected from Morocco (Group I: n = 68) and Italy (Group II: n = 112). Yeast species were biochemically and molecularly identified. A total of 72 yeast strains belonging to 13 genera, 8 from snakes in Group I and five from snakes in Group II were identified. The most frequently isolated species were Trichosporon asahii (22.2%) and Candida tropicalis (15.3%) from snakes in Group I and Debaryomyces spp. (16.7%) and Metahyphopichia silvanorum (11.1%) from snakes in Group II. Multiple azole and amphotericin B (AmB) resistance phenomena were detected among isolated yeasts. Azole multi drug resistance phenomena were detected among yeasts from Group I and Rhodotorula mucilaginosa from Group II, whereas AmB resistance phenomena among those from Group II. Data suggest that snakes may harbor pathogenetic yeasts, being potential reservoirs and spreaders of these organisms in the environment. Since the yeast species community from different groups of animals as well as their antifungal profile reflects the epidemiology of human yeast infections in the same geographical areas, the results indicate that snakes may be considered as sentinels for human/animal pathogenic microorganisms and bio-indicators of environmental quality.
Asunto(s)
Serpientes , Levaduras , Animales , Serpientes/microbiología , Levaduras/aislamiento & purificación , Levaduras/clasificación , Zoonosis/microbiología , Antifúngicos/farmacología , Italia , Marruecos , Humanos , Cloaca/microbiología , Farmacorresistencia Fúngica , Especies Centinela , Pruebas de Sensibilidad MicrobianaRESUMEN
OBJECTIVE: The increasing resistance of Malassezia yeasts against commonly used antifungal drugs dictates the need for novel antifungal compounds. Human lactoferrin-based peptides show a broad spectrum of antimicrobial activities. Various assays were performed to find the optimal growth conditions of the yeasts and to assess cell viability, using media with low lipid content to avoid peptide binding to medium components. METHODS: In the current study, we tested the antimicrobial susceptibility of 30 strains of M. furfur that cover the known IGS1 genotypic variation. RESULTS: hLF(1-11) inhibited the growth of all species tested, resulting in minimum inhibitory concentrations (MIC) values ranging from 12.5 to 100 µg/mL. In the combinatory tests, the majority of fractional inhibitory concentration indexes (FIC) for the tested strains of M. furfur were up to 1.0, showing that there is a synergistic or additive effect on the efficacy of the antifungal drugs when used in combination with hLF(1-11). CONCLUSION: Results showed that hLF(1-11) could be combined with fluconazole or amphotericin for the antimicrobial treatment of resistant strains, enhancing the potency of these antifungal drugs, resulting in an improved outcome for the patient.
RESUMEN
Candida auris represents one of the most urgent threats to public health, although its ecology remains largely unknown. Because amphibians and reptiles may present favorable conditions for C. auris colonization, cloacal and blood samples (n = 68), from several snake species, were cultured and molecularly screened for C. auris using molecular amplification of glycosylphosphatidylinositol protein-encoding genes and ribosomal internal transcribed spacer sequencing. Candida auris was isolated from the cloacal swab of one Egyptian cobra (Naja haje legionis) and molecularly identified in its cloaca and blood. The isolation of C. auris from wild animals is herein reported for the first time, thus suggesting the role that these animals could play as reservoirs of this emerging pathogen. The occurrence of C. auris in blood requires further investigation, although the presence of cationic antimicrobial peptides in the plasma of reptiles could play a role in reducing the vitality of the fungus.
Candida auris represents one of the most urgent threats to public health. In this study, we reported for the first time the isolation of C. auris from snake thus suggesting the role of these animals as reservoirs of this emerging pathogen.
Asunto(s)
Candida , Candidiasis , ADN Espaciador Ribosómico , Reservorios de Enfermedades , Animales , Candida/genética , Candida/clasificación , Candida/aislamiento & purificación , Candida/efectos de los fármacos , Reservorios de Enfermedades/microbiología , Candidiasis/microbiología , Candidiasis/veterinaria , ADN Espaciador Ribosómico/genética , ADN Espaciador Ribosómico/química , Cloaca/microbiología , Análisis de Secuencia de ADN , ADN de Hongos/genética , Sangre/microbiología , Serpientes/microbiología , Elapidae , Egipto , FilogeniaRESUMEN
This study reports a peculiar case of systemic candidiasis infection associated with pulmonary aspergillosis in an apparently immunocompetent alpaca. A captive 7-year-old female alpaca exhibited respiratory symptoms, underwent treatment with benzylpenicillin and dexamethasone, and succumbed to the infection 40 days later. During the post-mortem examination, subcutaneous emphysema, widespread pneumonia with multiple suppurative foci, scattered necro-suppurative lesions throughout the renal and hepatic parenchyma were evident. Histopathological analysis of the collected tissues revealed multifocal mild lymphoplasmacytic chronic interstitial nephritis, necro-suppurative pneumonia with the presence of fungal hyphae, multifocal foci of mineralization, and fibrosis in the liver. Fungal cultures confirmed the growth of Aspergillus fumigatus from the lungs, and Candida albicans from the liver, kidney, and heart. The only recognizable risk factor for candidiasis and pulmonary aspergillosis in this case was prior corticosteroid and antibiotic therapy. Nevertheless, it is crucial to consider systemic candidosis and pulmonary aspergillosis as potential differential diagnoses in respiratory infections among camelids. Prolonged treatment with glucocorticoids and antibiotics should be avoided as it could represent a risk factor for the onset of pathologies caused by opportunistic fungi such as Candida spp. and Aspergillus spp.
RESUMEN
INTRODUCTION: Malassezia spp. are a group of lipid-dependent basidiomycetes yeasts acting as commensal organisms of the human and animal skin. However, under some not well-defined circumstances, these yeasts may switch to opportunistic pathogens triggering a number of skin disorders with different clinical presentations. The genus comprises of 18 lipid-dependent species with a variable distribution in the hosts and pathologies thus suggesting a host- and microbe-specific interactions. AREA COVERED: This review highlighted and discussed the most recent literature regarding the genus Malassezia as a commensal or pathogenic organisms highlighting Malassezia-associated skin disorders in humans and animals and their antifungal susceptibility profile. A literature search of Malassezia associated skin disorders was performed via PubMed and Google scholar (up to May 2023), using the different keywords mainly associated with Malassezia skin disorders and Malassezia antifungal resistance. EXPERT OPINION: Malassezia yeasts are part of the skin mycobiota and their life cycle is strictly associated with the environment in which they live. The biochemical, physiological, or immunological condition of the host skin selects Malassezia spp. or genotypes able to survive in a specific environment by changing their metabolisms, thus producing virulence factors or metabolites which can cause skin disorders with different clinical presentations.
Asunto(s)
Dermatitis Seborreica , Dermatomicosis , Malassezia , Tiña Versicolor , Humanos , Animales , Tiña Versicolor/tratamiento farmacológico , Tiña Versicolor/microbiología , Tiña Versicolor/patología , Dermatomicosis/tratamiento farmacológico , Dermatomicosis/microbiología , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Dermatitis Seborreica/tratamiento farmacológico , Dermatitis Seborreica/microbiología , Piel/microbiología , Piel/patología , LípidosRESUMEN
INTRODUCTION: Malassezia is a major component of the skin microbiome, a lipophilic symbiotic organism of the mammalian skin, which can switch to opportunistic pathogens triggering multiple dermatological disorders in humans and animals. This phenomenon is favored by endogenous and exogenous host predisposing factors, which may switch Malassezia from a commensal to a pathogenic phenotype. AREA COVERED: This review summarizes and discusses the most recent literature on the pathogenesis of Malassezia yeasts, which ultimately results in skin disorders with different clinical presentation. A literature search of Malassezia pathogenesis was performed via PubMed and Google scholar (up to May 2023), using the following keywords: Pathogenesis and Malassezia;host risk factors and Malassezia, Malassezia and skin disorders; Malassezia and virulence factors: Malassezia and metabolite production; Immunology and Malassezia. EXPERT OPINION: Malassezia yeasts can maintain skin homeostasis being part of the cutaneous mycobiota; however, when the environmental or host conditions change, these yeasts are endowed with a remarkable plasticity and adaptation by modifying their metabolism and thus contributing to the appearance or aggravation of human and animal skin disorders.
Asunto(s)
Malassezia , Enfermedades Cutáneas Infecciosas , Animales , Humanos , Malassezia/genética , Malassezia/metabolismo , Piel , Factores de Riesgo , Fenotipo , MamíferosRESUMEN
The Microsporum canis complex consists of one zoophilic species, M. canis, and two anthropophilic species, M. audouinii and M. ferrugineum. These species are the most widespread zoonotic pathogens causing dermatophytosis in cats and humans worldwide. To clarify the evolutionary relationship between the three species and explore the potential host shift process, this study used phylogenetic analysis, population structure analysis, multispecies coalescent analyses, determination of MAT idiomorph distribution, sexual crosses, and macromorphology and physicochemical features to address the above questions. The complex of Microsporum canis, M. audouinii and M. ferrugineum comprises 12 genotypes. MAT1-1 was present only in M. canis, while the anthropophilic entities contained MAT1-2. The pseudocleistothecia were yielded by the mating behaviour of M. canis and M. audouinii. Growth rates and lipase, keratinolysis and urea hydrolytic capacities of zoophilic M. canis isolates were all higher than those of anthropophilic strains; DNase activity of M. ferrugineum exceeded that of M. canis. The optimum growth temperature was 28 °C, but 22 °C favoured the development of macroconidia. Molecular data, physicochemical properties and phenotypes suggest the adaptation of zoophilic M. canis to anthropophilic M. ferrugineum, with M. audouinii in an intermediate position.
RESUMEN
Cladosporium infections have a poor prognosis in animals, most likely due to a lack of knowledge about diagnosis and treatment. In this study, we described a case of a lethal Cladosporium allicinum infection in a captive bullfrog (Pyxicephalus adspersus) in Europe. One adult male bullfrog was referred with clinical signs of lethargy and a cutaneous nodule. Fungal infection was suspected on cytology and confirmed by histology and cultural isolation. The mold was identified by molecular methods using partial sequencing of the TEF1α gene and the ITS region of rDNA. Climbazole antifungal treatment was started but the frog died after 30 days, and necropsy was done. Pigmented hyphae and structures consistent with muriform bodies were found on a background of diffuse granulomatous inflammation at cytological and histopathological examinations. Fungal culture revealed the presence of pigmented fungi identified as Cladosporium allicinum only by partial sequencing of the TEF1α gene. A focally extensive granuloma with intralesional hyphae and muriform bodies effacing the architecture of head, liver, kidneys, lungs, and large intestine were retrieved after necropsy. This study is the first Italian report of the occurrence of lethal C. allicinum infection in a frog and highlights the role of this Cladosporium sp. in chromoblastomycosis.
RESUMEN
OBJECTIVES: Diutina (Candida) catenulata is an ascomycetous yeast isolated from environmental sources and animals, occasionally infecting humans. The aim of this study is to shed light on the in vitro antifungal susceptibility and genetic diversity of this opportunistic yeast. METHODS: Forty-five D. catenulata strains isolated from various sources (including human and environmental sources) and originating from nine countries were included. Species identification was performed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and confirmed via internal transcribed spacer ribosomal DNA barcoding. In vitro antifungal susceptibility was determined for seven systemic antifungals via the gradient strip method after 48 hours of incubation at 35°C using Etest® (Biomérieux) or Liofilchem® strips. Isolates exhibiting fluconazole minimal inhibitory concentrations (MICs) of ≥8 µg/mL were investigated for mutations in the ERG11 gene. A novel microsatellite genotyping scheme consisting of four markers was developed to assess genetic diversity. RESULTS: MIC ranges for amphotericin B, caspofungin, micafungin, isavuconazole, and posaconazole were 0.19-1 µg/mL, 0.094-0.5 µg/mL, 0.012-0.064 µg/mL, 0.003-0.047 µg/mL, and 0.006-0.032 µg/mL, respectively. By comparison, a broad range of MICs was noted for fluconazole (0.75 to >256 µg/mL) and voriconazole (0.012-0.38 mg/L), the higher values being observed among clinical strains. The Y132F amino acid substitution, associated with azole resistance in various Candida species (C. albicans, C. tropicalis, C. parapsilosis, and C. orthopsilosis), was the main substitution identified. Although microsatellite typing showed extensive genetic diversity, most strains with high fluconazole MICs clustered together, suggesting human-to-human transmission or a common source of contamination. DISCUSSION: The high rate of acquired fluconazole resistance among clinical isolates of D. catenulata is of concern. In this study, we highlight a link between the genetic diversity of D. catenulata and its antifungal resistance patterns, suggesting possible clonal transmission of resistant isolates.
Asunto(s)
Antifúngicos , Fluconazol , Animales , Humanos , Fluconazol/farmacología , Antifúngicos/farmacología , Candida , Anfotericina B/farmacología , Voriconazol , Levaduras , Candida parapsilosis , Candida tropicalis , ADN Intergénico , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Fúngica/genéticaRESUMEN
Over the last decade, Malassezia species have emerged as increasingly important pathogens associated with a wide range of dermatological disorders and bloodstream infections. The pathogenesis of Malassezia yeasts is not completely clear, but it seems to be strictly related to Malassezia strains and hosts and needs to be better investigated. This study aimed to assess the enzymatic activities, biofilm formation and in vitro antifungal profiles of Malassezia spp. from pityriasis versicolor (PV) and healthy patients. The potential relationship between virulence attributes, the antifungal profiles and the origin of strains was also assessed. A total of 44 Malassezia strains isolated from patients with (n = 31) and without (n = 13) PV were employed to evaluate phospholipase (Pz), lipase (Lz), and hemolytic (Hz) activities and biofilm formation. In addition, in vitro antifungal susceptibility testing was conducted using the CLSI broth microdilution with some modifications. A high percentage of strains produced Pz, Lz, Hz and biofilm regardless of their clinical origin. The highest number of strains producing high enzymatic activities came from PV patients. A correlation between the intensity of hydrolytic activities (Lz and Pz activities) and the Hz activity was detected. Positive associations between Lz and the low fluconazole susceptibility and Hz and biofilm formation were observed. These results suggest that enzyme patterns and biofilm formation along with antifungal profiles inter-play a role in the pathogenicity of Malassezia spp. and might explain the implication of some Malassezia spp. in invasive fungal infections and in the development of inflammation. LAY SUMMARY: There is still little information on the virulence factors of Malassezia spp., despite their implication in severe diseases. Phospholipase, lipase, and hemolytic activities, biofilm formation and decreased antifungal susceptibility seem to contribute to their virulence in susceptible hosts.
Asunto(s)
Malassezia , Tiña Versicolor , Factores de Virulencia , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Hemólisis , Humanos , Lipasa , Fosfolipasas , Tiña Versicolor/tratamiento farmacológico , Tiña Versicolor/microbiologíaRESUMEN
Insects, ticks, and mites represent a threat to animal health globally, mainly due to their role as vectors of pathogens. Among the most important diseases, those transmitted by mosquitoes (e.g., malaria and arboviral infections) and ticks (e.g., Lyme borreliosis, babesiosis, and viral haemorrhagic fever) have a huge impact on human health. The principal methods available for reducing the public health burden of most vector-borne diseases are vector-based intervention relying to insecticides and acaricides. However, the use of these products is challenged by the introduction of invasive species, the quick development of physiological insecticide and acaricide resistance, and their non-target effects on human health and environment. In this scenario, insecticide/acaricide-free control approaches based on the employment of entomopathogenic fungi (EPFs) are currently considered a promising tool in Integrated Pest/Vector Management, even if their large-scale use is still limited. In this article, we provide an overview on current knowledge about the role of EPFs for mosquito and tick management to assess solutions improving the delivery and efficacy of EPFs in the field. Laboratory research provided solid evidence that EPFs represent a next-generation control tool to manage mosquito and tick populations. However, the viability, infectivity, and persistence of fungal spores under field conditions are still inadequate. Herein we also discuss the development and optimization of EPF-based lure and kill approaches through biopolymers to improve cost-competitive, safety and eco-friendly pest and vector control tools.
Asunto(s)
Acaricidas , Culicidae , Insecticidas , Garrapatas , Animales , Hongos , Humanos , Insecticidas/farmacología , Control de Mosquitos , Mosquitos VectoresRESUMEN
Malassezia spp. are commensals of the skin, oral/sinonasal cavity, lower respiratory and gastrointestinal tract. Eighteen species have been recovered from humans, other mammals and birds. They can also be isolated from diverse environments, suggesting an evolutionary trajectory of adaption from an ecological niche in plants and soil to the mucocutaneous ecosystem of warm-blooded vertebrates. In humans, dogs and cats, Malassezia-associated dermatological conditions share some commonalities. Otomycosis is common in companion animals but is rare in humans. Systemic infections, which are increasingly reported in humans, have yet to be recognized in animals. Malassezia species have also been identified as pathogenetic contributors to some chronic human diseases. While Malassezia species are host-adapted, some species are zoophilic and can cause fungemia, with outbreaks in neonatal intensive care wards associated with temporary colonization of healthcare worker's hands from contact with their pets. Although standardization is lacking, susceptibility testing is usually performed using a modified broth microdilution method. Antifungal susceptibility can vary depending on Malassezia species, body location, infection type, disease duration, presence of co-morbidities and immunosuppression. Antifungal resistance mechanisms include biofilm formation, mutations or overexpression of ERG11, overexpression of efflux pumps and gene rearrangements or overexpression in chromosome 4.
RESUMEN
Pest management is looking for green and cost-effective innovative solutions to control tiger mosquitoes and other pests. By using biomimetic principles and biocompatible/biodegradable biopolymers, it could be possible to develop a new approach based on substrates that selectively attract insects by reproducing specific natural environmental conditions and then kill them by hosting and delivering a natural biopesticide or through mechanical action (biomimetic lure and kill approach, BL&K). Such an approach can be theoretically specialized against tiger mosquitoes (BL&K-TM) by designing hydrogels to imitate the natural oviposition site's conditions to employ them inside a lure and kill ovitraps as a biomimetic oviposition substrate. In this work, the hydrogels have been prepared to prove the concept. The study compares lab/on-field oviposition between standard substrates (absorbing paper/masonite) and a physical and chemically crosslinked hydrogel composition panel. Then the best performing is characterized to evaluate a correlation between the hydrogel's properties and oviposition. Tests identify a 2-Hydroxyethylcellulose (HEC)-based physical hydrogel preparation as five times more attractive than the control in a lab oviposition assay. When employed on the field in a low-cost cardboard trap, the same substrate is seven times more capturing than a standard masonite ovitrap, with a duration four times longer.
RESUMEN
Devrra triradiata Hochst. ex Boiss is an occasional plant species in the Northern region of Saudi Arabia. The shrub is favored on sandy desert wadis, gypsaceous substrate, and sandy gravel desert. In folk medicine, the plant is used for many purposes; to relieve stomach pains, against intestinal parasites, and for the regulation of menstruation. The present study describes the chemical composition of the essential oils (EOs) of different plant parts of D. triradiata. In vivo and in vitro biological activities of plant extracts and essential oils were also studied. Phenylpropanoids, elemicin (flowers: 100%), dillapiole (Stems: 82.33%; and seeds: 82.61%), and apiol (roots: 72.16%) were identified as the major compounds. The highest antioxidant activity was recorded for the EOs of roots and stems (IC50 = 0.282 µg/mL and 0.706 µg/mL, respectively). For plant extracts, ethyl acetate showed the highest antioxidant activities (IC50 = 2.47 and 3.18 µg/mL). EOs showed high antifungal activity against yeasts with low azole susceptibilities (i.e., Malassezia spp. and Candida krusei). The MIC values of EOs ranged between 3.4 mg/mL and 56.4 mg/mL. The obtained results also showed phytotoxic potential of plant extracts both on the germination features of Triticum aestivum seeds and the vegetative growth of seedlings.
RESUMEN
Essential oils (EOs) of Cymbopogon citratus and Cymbopogon proximus are known as sources of monoterpenes and sesquiterpenoids, although their biological activities have not been well investigated. In this study, the compositions of C. citratus and C. proximus EOs of Egyptian origin and their antifungal and antibiofilm properties against Candida spp. and Malassezia furfur were investigated. Antioxidant activities were also evaluated. GC-MS showed the presence of nine and eight constituents in C. citratus and C. proximus EOs, respectively, with geranial and neral as the major compounds of C. citratus EO and piperitone and α-terpinolene as the major compounds of C. proximus EO. Both EOs showed antifungal (MIC values ranging from 1.25 to 20 µL/ mL) and antibiofilm activities (% of reduction ranging from 27.65 ± 11.7 to 96.39 ± 2.8) against all yeast species. The antifungal and antibiofilm activities of C. citratus EO were significantly higher than those observed for C. proximus EO. M. furfur was more susceptible to both EOs than Candida spp. Both EOs exhibited the highest antioxidant activity. This study suggests that C. citratus and C. proximus EOs might be an excellent source of antifungal, antibiofilm and antioxidant drugs and might be useful for preventing Malassezia infections in both medical and veterinary medicine.
RESUMEN
Reptiles have become popular exotic pets and in some parts of the world, they are used as important source of food, medicines, and materials. Synanthropic lizards are recognized as reservoirs of viruses, bacteria, and parasites but their role in dissemination of zoonotic pathogenic yeasts in the environment was never investigated. Therefore, fecal samples (n=177) from Podarcis siculus (Italian wall lizard), Chalcides ocellatus (Ocellated skink) and Tarentola mauritanica (Moorish gecko) were collected and yeasts were isolated and identified biochemically and molecularly by sequencing the rDNA internal transcribed spacer region (ITS). The phylogenetical relationship of isolated yeast species and their antifungal susceptibility profiles to ten antifungal agents were also assessed. Sixty samples (n=60/177; 33.9%) scored positive for yeasts, with the highest occurrence in C. ocellatus (n=11/17; 64.7%) and the highest variety of species in P. siculus (n=11/12; 91.6%). A total of 364 isolates belonging to Candida, Trichosporon, Saccharomyces and Geotrichum genera were molecularly identified. In particular, Candida albicans (n=160; 44%) followed by Trichosporon coremiiforme (n=44; 12.1%), Pichia kudriavzevii (n=32; 8.8%) and Trichosporon asahii (n=28; 7.7%) were the most frequently isolated species. The phylogenetic tree grouped all representative sequence types within the clade including Candida spp. strains from different geographical areas and from animal species, including human. All tested strains showed high susceptibility to the assayed antifungal drugs. This study suggests the role of lizards as reservoirs and spreaders of zoonotic pathogenic yeasts in the environment. The absence of resistance phenomena in the isolated yeasts might reflect an environment free of azole antifungal pollution or chemicals, suggesting the usefulness of these animals as bio indicators of environment quality.
Asunto(s)
Antifúngicos , Lagartos , Animales , Antifúngicos/farmacología , Candida , Pruebas de Sensibilidad Microbiana , Filogenia , Levaduras/genéticaRESUMEN
BACKGROUND: Pest management has been facing the spread of invasive species, insecticide resistance phenomena, and concern for the impact of chemical pesticides on human health and the environment. It has tried to deal with them by developing technically efficient and economically sustainable solutions to complement/replace/improve traditional control methods. The renewal has been mainly directed towards less toxic pesticides or enhancing the precision of their delivery to reduce the volume employed and side effects through lure-and-kill approaches based on semiochemicals attractants. However, one of the main pest management problems is that efficacy depends on the effectiveness of the attractant system, limiting its successful employment to semiochemical stimuli-responsive insects. Biomaterial-based and bioinspired/biomimetic solutions that already guide other disciplines (e.g., medical sciences) in developing precision approaches could be a helpful tool to create attractive new strategies to liberate precision pest management from the need for semiochemical stimuli, simplify their integration with bioinsecticides, and foster the use of still underemployed solutions. APPROACH PROPOSED: We propose an innovative approach, called "biomimetic lure-and-kill". It exploits biomimetic principles and biocompatible/biodegradable biopolymers (e.g., natural hydrogels) to develop new substrates that selectively attract insects by reproducing specific natural environmental conditions (biomimetic lure) and kill them by hosting and delivering a natural biopesticide or through mechanical action. Biomimetic lure-and-kill-designed substrates point to provide a new attractive system to develop/improve and make more cost-competitive new and conventional devices (e.g. traps). A first example application is proposed using the tiger mosquito Aedes albopictus as a model. CONCLUSIONS: Biomaterials, particularly in the hydrogel form, can be a useful tool for developing the biomimetic lure-and-kill approach because they can satisfy multiple needs simultaneously (e.g., biomimetic lure, mechanical lethality, biocompatibility, and bioinsecticide growth). Such an approach might be cost-competitive, and with the potential for applicability to several pest species. Moreover, it is already technically feasible, since all the technologies necessary to design and configure materials with specific characteristics are already available on the market.
Asunto(s)
Aedes , Control de Mosquitos , Animales , Biomimética , Biopolímeros/farmacología , Humanos , Mosquitos Vectores , Ingeniería de TejidosRESUMEN
Wildlife animals are recognized as reservoirs for zoonotic fungi and their faeces might play an important role in introducing pathogens into the environment. Thought wild boar (Sus scrofa) population has dramatically increased across Europe, information about their possible role in dissemination of zoonotic pathogenic yeasts in the environment is scant. Therefore, fecal samples (n = 124) from wild boars from Campania region (Southern Italy) were collected and yeasts identified biochemically and molecularly by sequencing of the internal transcribed spacer region and their phylogenetical relationship assessed. The antifungal susceptibility profiles of yeasts were also investigated using AFST-EUCAST method. Yeasts were isolated from 50.1% of the samples with the highest occurrence in samples from the province of Salerno (61.1%). A total of 368 Candida strains belonging to nine species were identified, with Candida albicans (45.7%), followed by Candida krusei (15.2%), Kazachstania slooffiae (9.8%) and Candida parapsilosis (7.6%) as the most prevalent identified species. Among C. albicans four sequence types (i.e., ST1-ST4) were identified with an intraspecific nucleotide difference up to 0.21%. The ML tree grouped all representative sequence types as paraphyletic clades with those of the references yeast species, respectively and supported by high bootstrap values. Fluconazole was the less active drug whereas, posaconazole, voriconazole, and isavuconazole the most active one. No resistance phenomena were observed for C. albicans and high MICs values for 5FC, azoles and echinocandines were registered in non-albicans Candida spp. This study showed, for the first time, the important role of wild boars in dissemination of pathogenic fungi in the environment. The absence of resistance phenomena in the Candida spp. might reflect environmental free from residues of azoles antifungals pollution or chemicals and suggests the role of wild boar as bio indicators of environment quality.
Asunto(s)
Farmacorresistencia Fúngica , Biomarcadores Ambientales , Animales , Antifúngicos/farmacología , Azoles , Candida , Candida albicans , Fluconazol , Pruebas de Sensibilidad Microbiana , Sus scrofa , Porcinos , Levaduras/genéticaRESUMEN
Malassezia (M.) genus includes commensal yeasts of increasing medical importance, as they result in many diseases, ranging from pityriasis versicolor (PV) to systemic infections. Previous studies reported geographical variations in distribution of Malassezia species in PV lesions. The aims of the current study were to define the clinico-demographic features of PV in Tunisia, to characterize Malassezia isolates using phenotypic and molecular techniques and to find out any association between species and clinico-demographic parameters. In total, 120 PV patients were enrolled in this study. Skin scrapings were collected and inoculated on Sabouraud agar and modified Dixon medium. Malassezia species were identified using conventional phenotypic methods and 26 s rDNA PCR-RFLP. The highest prevalence of PV was observed among young adults' group. The most affected body areas were the back and neck. In overall, 50.8% and 35% of PV cases had pruritus and history of recurrence respectively. The overall concordance between phenotypic and molecular methods was high (80.95%). The discordant results are rather due to the presence of multiple species in a single culture than true misidentification. Using PCR-RFLP, M. furfur was the most isolated species (38.7%) followed by M. globosa (37.7%), M. restricta and M. sympodialis. No statistically significant association was noted between Malassezia spp. and clinico-demographic characteristics. Unlike many reports from temperate climate countries, M. furfur and M. globosa along together were the most frequently isolated species in Tunisian PV patients. Although phenotypic methods remain simple and cost-effective, molecular techniques are considered as fast and accurate methods for diagnosis purposes.