Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Mol Cell Cardiol ; 186: 1-15, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37951204

RESUMEN

Myocardial infarction (MI) results from occlusion of blood supply to the heart muscle causing death of cardiac muscle cells. Following myocardial infarction (MI), extracellular matrix deposition and scar formation mechanically stabilize the injured heart as damaged myocytes undergo necrosis and removal. Fibroblasts and macrophages are key drivers of post-MI scar formation, maturation, and ongoing long-term remodelling; however, their individual contributions are difficult to assess from bulk analyses of infarct scar. Here, we employ state-of-the-art automated spatially targeted optical micro proteomics (autoSTOMP) to photochemically tag and isolate proteomes associated with subpopulations of fibroblasts (SMA+) and macrophages (CD68+) in the context of the native, MI tissue environment. Over a time course of 6-weeks post-MI, we captured dynamic changes in the whole-infarct proteome and determined that some of these protein composition signatures were differentially localized near SMA+ fibroblasts or CD68+ macrophages within the scar region. These results link specific cell populations to within-infarct protein remodelling and illustrate the distinct metabolic and structural processes underlying the observed physiology of each cell type.


Asunto(s)
Cicatriz , Infarto del Miocardio , Ratas , Animales , Cicatriz/metabolismo , Proteómica , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Fibroblastos/metabolismo , Miocitos Cardíacos/metabolismo , Macrófagos/metabolismo , Remodelación Ventricular
2.
J Am Heart Assoc ; 12(3): e028121, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36734341

RESUMEN

Combined pre-/postcapillary pulmonary hypertension (Cpc-PH), a complication of left heart failure, is associated with higher mortality rates than isolated postcapillary pulmonary hypertension alone. Currently, knowledge gaps persist on the mechanisms responsible for the progression of isolated postcapillary pulmonary hypertension (Ipc-PH) to Cpc-PH. Here, we review the biomechanical and mechanobiological impact of left heart failure on pulmonary circulation, including mechanotransduction of these pathological forces, which lead to altered biological signaling and detrimental remodeling, driving the progression to Cpc-PH. We focus on pathologically increased cyclic stretch and decreased wall shear stress; mechanotransduction by endothelial cells, smooth muscle cells, and pulmonary arterial fibroblasts; and signaling-stimulated remodeling of the pulmonary veins, capillaries, and arteries that propel the transition from Ipc-PH to Cpc-PH. Identifying biomechanical and mechanobiological mechanisms of Cpc-PH progression may highlight potential pharmacologic avenues to prevent right heart failure and subsequent mortality.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión Pulmonar , Humanos , Células Endoteliales , Mecanotransducción Celular , Arteria Pulmonar
4.
J Appl Physiol (1985) ; 132(3): 888-901, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35112927

RESUMEN

With severe right ventricular (RV) pressure overload, women demonstrate better clinical outcomes compared with men. The mechanoenergetic mechanisms underlying this protective effect, and their dependence on female endogenous sex hormones, remain unknown. To investigate these mechanisms and their impact on RV systolic and diastolic functional adaptation, we created comparable pressure overload via pulmonary artery banding (PAB) in intact male and female Wistar rats and ovariectomized (OVX) female rats. At 8 wk after surgery, right heart catheterization demonstrated increased RV energy input [indexed pressure-volume area (iPVA)] in all PAB groups, with the greatest increase in intact females. PAB also increased RV energy output [indexed stroke or external work (iEW)] in all groups, again with the greatest increase in intact females. In contrast, PAB only increased RV contractility-indexed end-systolic elastance (iEes)] in females. Despite these sex-dependent differences, no statistically significant effects were observed in the ratio of RV energy output to input (mechanical efficiency) or in mechanoenergetic cost to pump blood with pressure overload. These metrics were similarly unaffected by loss of endogenous sex hormones in females. Also, despite sex-dependent differences in collagen content and organization with pressure overload, decreases in RV compliance and relaxation time constant (tau Weiss) were not determined to be sex dependent. Overall, despite sex-dependent differences in RV contractile and fibrotic responses, RV mechanoenergetics for this degree and duration of pressure overload are comparable between sexes and suggest a homeostatic target.NEW & NOTEWORTHY Sex differences in right ventricular mechanical efficiency and energetic adaptation to increased right ventricular afterload were measured. Despite sex-dependent differences in contractile and fibrotic responses, right ventricular mechanoenergetic adaptation was comparable between the sexes, suggesting a homeostatic target.


Asunto(s)
Caracteres Sexuales , Disfunción Ventricular Derecha , Animales , Modelos Animales de Enfermedad , Femenino , Ventrículos Cardíacos , Humanos , Masculino , Arteria Pulmonar , Ratas , Ratas Wistar , Función Ventricular Derecha/fisiología , Presión Ventricular/fisiología
5.
J Mol Cell Cardiol ; 163: 156-166, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34756992

RESUMEN

Ventricular enlargement and heart failure are common in patients who survive a myocardial infarction (MI). There is striking variability in the degree of post-infarction ventricular remodeling, however, and no one factor or set of factors have been identified that predicts heart failure risk well. Sympathetic activation directly and indirectly modulates hypertrophic stimuli by altering both neurohormonal milieu and ventricular loading. In a recent study, we developed a method to identify the balance of reflex compensatory mechanisms employed by individual animals following MI based on measured hemodynamics. Here, we conducted prospective studies of acute myocardial infarction in rats to test the degree of variability in reflex compensation as well as whether responses to pharmacologic agents targeted at those reflex mechanisms could be anticipated in individual animals. We found that individual animals use very different mixtures of reflex compensation in response to experimental coronary ligation. Some of these mechanisms were related - animals that compensated strongly with venoconstriction tended to exhibit a decrease in the contractility of the surviving myocardium and those that increased contractility tended to exhibit venodilation. Furthermore, some compensatory mechanisms - such as venoconstriction - increased the extent of predicted ventricular enlargement. Unfortunately, initial reflex responses to infarction were a poor predictor of subsequent responses to pharmacologic agents, suggesting that customizing pharmacologic therapy to individuals based on an initial response will be challenging.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Animales , Hemodinámica , Humanos , Estudios Prospectivos , Ratas , Remodelación Ventricular
6.
J Proteome Res ; 20(9): 4543-4552, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34436902

RESUMEN

Tissue microenvironment properties like blood flow, extracellular matrix, or proximity to immune-infiltrate are important regulators of cell biology. However, methods to study regional protein expression in the native tissue environment are limited. To address this need, we developed a novel approach to visualize, purify, and measure proteins in situ using automated spatially targeted optical microproteomics (AutoSTOMP). Here, we report custom codes to specify regions of heterogeneity in a tissue section and UV-biotinylate proteins within those regions. We have developed liquid chromatography-mass spectrometry (LC-MS)/MS-compatible biochemistry to purify those proteins and label-free quantification methodology to determine protein enrichment in target cell types or structures relative to nontarget regions in the same sample. These tools were applied to (a) identify inflammatory proteins expressed by CD68+ macrophages in rat cardiac infarcts and (b) characterize inflammatory proteins enriched in IgG4+ lesions in human esophageal tissues. These data indicate that AutoSTOMP is a flexible approach to determine regional protein expression in situ on a range of primary tissues and clinical biopsies where current tools and sample availability are limited.


Asunto(s)
Proteínas , Proteómica , Animales , Cromatografía Liquida , Espectrometría de Masas , Ratas
7.
J Elast ; 145(1-2): 321-337, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35095176

RESUMEN

The mechanics of most soft tissues in the human body are determined by the organization of their collagen fibers. Predicting how mechanics will change during growth and remodeling of those tissues requires constitutive laws that account for the density and dispersion of collagen fibers. Post-infarction scar in the heart, a mechanically and structurally complex material, does not yet have a validated fiber-based constitutive model. In this study, we tested four different constitutive laws employing exponential or polynomial strain-energy functions and accounting for either mean fiber orientation alone or the details of the fiber distribution about that mean. We quantified the goodness of fit of each law to mechanical testing data from 6-week-old myocardial scar in the rat using both sum of squared error (SSE) and the Akaike Information Criterion (AIC) to account for differences in the number of material parameters within the constitutive laws. We then compared their ability to prospectively predict the mechanics of independent myocardial scar samples from other time points during healing. Our analysis suggests that a constitutive law with a polynomial form that incorporates detailed information about collagen fiber distribution using a structure tensor provides excellent fits with just two parameters and reasonable predictions of myocardial scar mechanics from measured structure alone in scars containing sufficiently high collagen content.

8.
Am J Physiol Heart Circ Physiol ; 315(4): H1041-H1050, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30028201

RESUMEN

Previous studies have suggested that the composition and global mechanical properties of the scar tissue that forms after a myocardial infarction (MI) are key determinants of long-term survival, and emerging therapies such as biomaterial injection are designed in part to alter those mechanical properties. However, recent evidence suggests that local mechanics regulate scar formation post-MI, so that perturbing infarct mechanics could have unexpected consequences. We therefore tested the effect of changes in local mechanical environment on scar collagen turnover, accumulation, and alignment in 77 Sprague-Dawley rats at 1, 2, 3 and 6 wk post-MI by sewing a Dacron patch to the epicardium to eliminate circumferential strain while permitting continued longitudinal stretching with each heart beat. We found that collagen in healing infarcts aligned parallel to regional strain and perpendicular to the preinfarction muscle and collagen fiber direction, strongly supporting our hypothesis that mechanical environment is the primary determinant of scar collagen alignment. Mechanical reinforcement reduced levels of carboxy-terminal propeptide of type I procollagen (PICP; a biomarker for collagen synthesis) in samples collected by microdialysis significantly, particularly in the first 2 wk. Reinforcement also reduced carboxy-terminal telopeptide of type I collagen (ICTP; a biomarker for collagen degradation), particularly at later time points. These alterations in collagen turnover produced no change in collagen area fraction as measured by histology but significantly reduced wall thickness in the reinforced scars compared with untreated controls. Our findings confirm the importance of regional mechanics in regulating scar formation after infarction and highlight the potential for therapies that reduce stretch to also reduce wall thickness in healing infarcts. NEW & NOTEWORTHY This study shows that therapies such as surgical reinforcement, which reduce stretch in healing infarcts, can also reduce collagen synthesis and wall thickness and modify collagen alignment in postinfarction scars.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos/instrumentación , Colágeno/metabolismo , Infarto del Miocardio/cirugía , Miocardio/metabolismo , Función Ventricular Izquierda , Remodelación Ventricular , Cicatrización de Heridas , Animales , Colágeno Tipo I/metabolismo , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Fibroblastos/patología , Masculino , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocardio/patología , Fragmentos de Péptidos/metabolismo , Péptidos/metabolismo , Tereftalatos Polietilenos , Procolágeno/metabolismo , Ratas Sprague-Dawley , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA