Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 324: 116410, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36352716

RESUMEN

Floating solar photovoltaic (FPV) deployments are increasing globally as the switch to renewable energy intensifies, representing a considerable water surface transformation. FPV installations can potentially impact aquatic ecosystem function, either positively or negatively. However, these impacts are poorly resolved given the challenges of collecting empirical data for field or modelling experiments. In particular, there is limited evidence on the response of phytoplankton to changes in water body thermal dynamics and light climate with FPV. Given the importance of understanding phytoplankton biomass and species composition for managing ecosystem services, we use an uncertainty estimation approach to simulate the effect of FPV coverage and array siting location on a UK reservoir. FPV coverage was modified in 10% increments from a baseline with 0% coverage to 100% coverage for three different FPV array siting locations based on reservoir circulation patterns. Results showed that FPV coverage significantly impacted thermal properties, resulting in highly variable impacts on phytoplankton biomass and species composition. The impacts on phytoplankton were often dependent on array siting location as well as surface coverage. Changes to phytoplankton species composition were offset by the decrease in phytoplankton biomass associated with increasing FPV coverage. We identified that similar phytoplankton biomass reductions could be achieved with less FPV coverage by deploying the FPV array on the water body's faster-flowing area than the central or slower flowing areas. The difference in response dependent on siting location could be used to tailor phytoplankton management in water bodies. Simulation of water body-FPV interactions efficiently using an uncertainty approach is an essential tool to rapidly develop understanding and ultimately inform FPV developers and water body managers looking to minimise negative impacts and maximise co-benefits.


Asunto(s)
Ecosistema , Fitoplancton , Biomasa , Luz Solar , Agua
2.
Environ Sci Technol ; 54(6): 3159-3168, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32073835

RESUMEN

In the United States, approximately 48 million people are served by private wells. Unlike public water systems, private well water quality is not monitored, and there are few studies on the extent and sources of contamination of private wells. We extensively investigated five private wells to understand the variability in microbial contamination, the role of septic systems as sources of contamination, and the effect of rainfall on well water quality. From 2016 to 2017, weekly or biweekly samples (n = 105) were collected from five private wells in rural Pennsylvania. Samples were tested for general water quality parameters, conventional and sewage-associated microbial indicators, and human pathogens. Total coliforms, human Bacteroides (HF183), and pepper mild mottle virus were detected at least once in all wells. Regression revealed significant relationships between HF183 and rainfall 8-14 days prior to sampling and between total coliforms and rainfall 8-14 or 0-14 days prior to sampling. Dye tracer studies at three wells confirmed the impact of household septic systems on well contamination. Microbiological measurements, chemical water quality data, and dye tracer tests provide evidence of human fecal contamination in the private wells studied, suggesting that household septic systems are the source of this contamination.


Asunto(s)
Microbiología del Agua , Calidad del Agua , Monitoreo del Ambiente , Heces , Humanos , Pennsylvania , Contaminación del Agua , Pozos de Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...