Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(17): e2319607121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38635635

RESUMEN

The development of seizures in epilepsy syndromes associated with malformations of cortical development (MCDs) has traditionally been attributed to intrinsic cortical alterations resulting from abnormal network excitability. However, recent analyses at single-cell resolution of human brain samples from MCD patients have indicated the possible involvement of adaptive immunity in the pathogenesis of these disorders. By exploiting the MethylAzoxyMethanol (MAM)/pilocarpine (MP) rat model of drug-resistant epilepsy associated with MCD, we show here that the occurrence of status epilepticus and subsequent spontaneous recurrent seizures in the malformed, but not in the normal brain, are associated with the outbreak of a destructive autoimmune response with encephalitis-like features, involving components of both cell-mediated and humoral immune responses. The MP brain is characterized by blood-brain barrier dysfunction, marked and persisting CD8+ T cell invasion of the brain parenchyma, meningeal B cell accumulation, and complement-dependent cytotoxicity mediated by antineuronal antibodies. Furthermore, the therapeutic treatment of MP rats with the immunomodulatory drug fingolimod promotes both antiepileptogenic and neuroprotective effects. Collectively, these data show that the MP rat could serve as a translational model of epileptogenic cortical malformations associated with a central nervous system autoimmune response. This work indicates that a preexisting brain maldevelopment predisposes to a secondary autoimmune response, which acts as a precipitating factor for epilepsy and suggests immune intervention as a therapeutic option to be further explored in epileptic syndromes associated with MCDs.


Asunto(s)
Epilepsia , Acetato de Metilazoximetanol/análogos & derivados , Pilocarpina , Ratas , Humanos , Animales , Autoinmunidad , Epilepsia/inducido químicamente , Epilepsia/patología , Convulsiones/patología , Encéfalo/patología , Modelos Animales de Enfermedad
2.
Brain Pathol ; 33(3): e13141, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36564349

RESUMEN

Dendritic spines are the postsynaptic sites for most excitatory glutamatergic synapses. We previously demonstrated a severe spine loss and synaptic reorganization in human neocortices presenting Type II focal cortical dysplasia (FCD), a developmental malformation and frequent cause of drug-resistant focal epilepsy. We extend the findings, investigating the potential role of complement components C1q and C3 in synaptic pruning imbalance. Data from Type II FCD were compared with those obtained in focal epilepsies with different etiologies. Neocortical tissues were collected from 20 subjects, mainly adults with a mean age at surgery of 31 years, admitted to epilepsy surgery with a neuropathological diagnosis of: cryptogenic, temporal lobe epilepsy with hippocampal sclerosis, and Type IIa/b FCD. Dendritic spine density quantitation, evaluated in a previous paper using Golgi impregnation, was available in a subgroup. Immunohistochemistry, in situ hybridization, electron microscopy, and organotypic cultures were utilized to study complement/microglial activation patterns. FCD Type II samples presenting dendritic spine loss were characterized by an activation of the classical complement pathway and microglial reactivity. In the same samples, a close relationship between microglial cells and dendritic segments/synapses was found. These features were consistently observed in Type IIb FCD and in 1 of 3 Type IIa cases. In other patient groups and in perilesional areas outside the dysplasia, not presenting spine loss, these features were not observed. In vitro treatment with complement proteins of organotypic slices of cortical tissue with no sign of FCD induced a reduction in dendritic spine density. These data suggest that dysregulation of the complement system plays a role in microglia-mediated spine loss. This mechanism, known to be involved in the removal of redundant synapses during development, is likely reactivated in Type II FCD, particularly in Type IIb; local treatment with anticomplement drugs could in principle modify the course of disease in these patients.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Displasia Cortical Focal , Malformaciones del Desarrollo Cortical , Adulto , Humanos , Espinas Dendríticas/patología , Vía Clásica del Complemento , Malformaciones del Desarrollo Cortical/patología , Epilepsia/patología , Epilepsia Refractaria/patología
3.
Elife ; 102021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34542403

RESUMEN

Background: Spinal muscular atrophy (SMA) is a neuromuscular disorder characterized by the degeneration of the second motor neuron. The phenotype ranges from very severe to very mild forms. All patients have the homozygous loss of the SMN1 gene and a variable number of SMN2 (generally 2-4 copies), inversely related to the severity. The amazing results of the available treatments have made compelling the need of prognostic biomarkers to predict the progression trajectories of patients. Besides the SMN2 products, few other biomarkers have been evaluated so far, including some miRs. Methods: We performed whole miRNome analysis of muscle samples of patients and controls (14 biopsies and 9 cultures). The levels of muscle differentially expressed miRs were evaluated in serum samples (51 patients and 37 controls) and integrated with SMN2 copies, SMN2 full-length transcript levels in blood and age (SMA-score). Results: Over 100 miRs were differentially expressed in SMA muscle; 3 of them (hsa-miR-181a-5p, -324-5p, -451a; SMA-miRs) were significantly upregulated in the serum of patients. The severity predicted by the SMA-score was related to that of the clinical classification at a correlation coefficient of 0.87 (p<10-5). Conclusions: miRNome analyses suggest the primary involvement of skeletal muscle in SMA pathogenesis. The SMA-miRs are likely actively released in the blood flow; their function and target cells require to be elucidated. The accuracy of the SMA-score needs to be verified in replicative studies: if confirmed, its use could be crucial for the routine prognostic assessment, also in presymptomatic patients. Funding: Telethon Italia (grant #GGP12116).


Asunto(s)
Biomarcadores/sangre , MicroARNs/genética , Músculo Esquelético/metabolismo , Atrofia Muscular Espinal/genética , Adolescente , Adulto , Biomarcadores/análisis , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , MicroARNs/sangre , MicroARNs/metabolismo , Persona de Mediana Edad , Atrofia Muscular Espinal/sangre , Atrofia Muscular Espinal/metabolismo , Transcriptoma
4.
J Colloid Interface Sci ; 582(Pt B): 678-700, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-32911414

RESUMEN

HYPOTHESIS: Iron oxide and other ferrite nanoparticles have not yet found widespread application in the medical field since the translation process faces several big hurdles. The incomplete knowledge of the interactions between nanoparticles and living organisms is an unfavorable factor. This complex subject should be made simpler by synthesizing magnetic nanoparticles with good physical (relaxivity) and chemical (colloidal stability, anti-fouling) properties and no biological activity (no immune-related effects, minimal internalization, fast clearance). Such an innocent scaffold is the main aim of the present paper. We systematically searched for it within the class of small-to-medium size ferrite nanoparticles coated by small (zwitter)ionic ligands. Once established, it can be functionalized to achieve targeting, drug delivery, etc. and the observed biological effects will be traced back to the functional molecules only, as the nanosized scaffold is innocent. EXPERIMENTS: We synthesized nine types of magnetic nanoparticles by systematic variation of core composition, size, coating. We investigated their physico-chemical properties and interaction with serum proteins, phagocytic microglial cells, and a human model of inflammation and studied their biodistribution and clearance in healthy mice. The nanoparticles have good magnetic properties and their surface charge is determined by the preferential adsorption of anions. All nanoparticle types can be considered as immunologically safe, an indispensable pre-requisite for medical applications in humans. All but one type display low internalization by microglial BV2 cells, a process strongly affected by the nanoparticle size. Both small (3 nm) and medium size (11 nm) zwitterionic nanoparticles are in part captured by the mononuclear phagocyte system (liver and spleen) and in part rapidly (≈1 h) excreted through the urinary system of mice. FINDINGS: The latter result questions the universality of the accepted size threshold for the renal clearance of nanoparticles (5.5 nm). We suggest that it depends on the nature of the circulating particles. Renal filterability of medium-size magnetic nanoparticles is appealing because they share with small nanoparticles the decreased accumulation-related toxicity while performing better as magnetic diagnostic/therapeutic agents thanks to their larger magnetic moment. In conclusion, many of our nanoparticle types are a bio-compatible innocent scaffold with unexpectedly favorable clearance.


Asunto(s)
Nanopartículas de Magnetita , Nanopartículas , Animales , Proteínas Sanguíneas , Compuestos Férricos , Ratones , Distribución Tisular
5.
Front Pharmacol ; 11: 181, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32180728

RESUMEN

Antiepileptic drug-resistance is a major health problem in patients with cortical dysplasia (CD). Whether drug-resistant epilepsy is associated with progressive brain damage is still debated. We previously generated a rat model of acquired CD, the methylazoxymethanol-pilocarpine (MP) rat, in which the occurrence of status epilepticus and subsequent spontaneous seizures induce progressive brain damage (Nobili et al., 2015). The present study tested the outcome of early-chronic carbamazepine (CBZ) administration on both seizure activity and brain damage in MP rats. We took advantage of the non-invasive CBZ-in-food administration protocol, established by Ali (2012), which proved effective in suppressing generalized convulsive seizures in kainic acid rat model of epilepsy. MP rats were treated immediately after the onset of the first spontaneous seizure with 300 mg/kg/day CBZ formulated in pellets for a two-months-trial. CBZ-treated rats were continuously video-monitored to detect seizure activity and were compared with untreated epileptic MP rats. Despite CBZ serum levels in treated rats were within the suggested therapeutic range for humans, CBZ affected spontaneous convulsive seizures in 2 out of 10 treated rats (responders), whereas the remaining animals (non-responders) did not show any difference when compared to untreated MP rats. Histological analysis revealed cortical thinning paralleled by robust staining of Fluoro-Jade+ (FJ+) degenerating neurons and diffuse tissue necrosis in CBZ-non-responder vs CBZ-responder rats. Data reported here suggest that MP rat model represents suitable experimental setting where to investigate mechanisms of CD-related drug-resistant epilepsy and to verify if modulation of seizures, with appropriate treatment, may reduce seizure-induced brain damage.

6.
Neuropharmacology ; 153: 82-97, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31047919

RESUMEN

Glutamate receptors play a crucial pathogenic role in brain damage induced by status epilepticus (SE). SE may initiate NMDAR-dependent excitotoxicity through the production of oxidative damage mediated by the activation of a ternary complex formed by the NMDA receptor, the post-synaptic density scaffolding protein 95 (PSD95) and the neuronal NO synthase (nNOS). The inhibition of the protein-protein-interaction (PPI) of the NMDAR-PSD95-nNOS complex is one of the most intriguing challenges recently developed to reduce neuronal death in both animal models and in patients with cerebral ischemia. We took advantage of this promising approach to verify whether early administration of a neuroprotective NMDAR-PSD95-nNOS PPI inhibitor preserves the brain from SE-induced damage in a model of acquired cortical dysplasia, the methylazoxymethanol (MAM)/pilocarpine rat. Pilocarpine-induced SE rapidly determined neurodegenerative changes mediated by a NMDAR-downstream neurotoxic pathway in MAM rats. We demonstrated that SE rapidly induces NMDAR activation, nNOS membrane translocation, PSD95-nNOS molecular interaction associated with neuronal and glial peroxynitrite accumulation in the neocortex of MAM-pilocarpine rats. These changes were paralleled by rapid c-fos overexpression and by progressive spectrin proteolysis, suggestive of calpain activity and irreversible cytoskeletal damage. Early administration of a cell-penetrating Tat-N-dimer peptide inhibitor of NMDAR-PSD95-nNOS PPI during SE significantly rescued the MAM-pilocarpine rats from SE-induced mortality, reduced the number of degenerating neurons, decreased neuronal c-fos activation, peroxynitrite formation and cytoskeletal degradation and prevented astrogliosis. Our findings suggest an overall neuroprotective effect of blocking PSD95-nNOS protein-protein-interaction against SE insult.


Asunto(s)
Homólogo 4 de la Proteína Discs Large/metabolismo , Fármacos Neuroprotectores/administración & dosificación , Óxido Nítrico Sintasa de Tipo I/metabolismo , Péptidos/administración & dosificación , Estado Epiléptico/inducido químicamente , Estado Epiléptico/metabolismo , Animales , Modelos Animales de Enfermedad , Homólogo 4 de la Proteína Discs Large/antagonistas & inhibidores , Femenino , Acetato de Metilazoximetanol/análogos & derivados , Acetato de Metilazoximetanol/toxicidad , Óxido Nítrico Sintasa de Tipo I/antagonistas & inhibidores , Pilocarpina/toxicidad , Embarazo , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Estado Epiléptico/prevención & control
7.
PLoS One ; 13(6): e0199105, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29902268

RESUMEN

Spinal Muscular Atrophy (SMA) is a severe autosomal recessive disease characterized by selective motor neuron degeneration, caused by disruptions of the Survival of Motor Neuron 1 (Smn1) gene. The main product of SMN1 is the full-length SMN protein (FL-SMN), that plays an established role in mRNA splicing. FL-SMN is also involved in neurite outgrowth and axonal transport. A shorter SMN isoform, axonal-SMN or a-SMN, displays a more specific axonal localization and has remarkable axonogenic properties in NSC-34. Introduction of known SMA mutations into the a-SMN transcript leads to impairment of axon growth and morphological defects similar to those observed in SMA patients and animal models. Although there is increasing evidence for the relevance of SMN axonal functions in SMA pathogenesis, the specific contributions of FL-SMN and a-SMN are not known yet. This work aimed to analyze the differential roles of FL-SMN and a-SMN in axon outgrowth and in neuronal homeostasis during differentiation of neurons into a mature phenotype. We employed primary cultures of hippocampal neurons as a well-defined model of polarization and differentiation. By analyzing subcellular localization, we showed that a-SMN is preferentially localized in the growing axonal compartment. By specifically silencing FL-SMN or a-SMN proteins, we demonstrated that both proteins play a role in axon growth, as their selective down-regulation reduces axon length without affecting dendritic arborization. a-SMN silencing, and in minor extent FL-SMN silencing, resulted in the growth of multi-neuritic neurons, impaired in the differentiation process of selecting a single axon out of multiple neurites. In these neurons, neurites often display mixed axonal and dendritic markers and abnormal distribution of the axonal initial segment protein Ankirin G, suggesting loss of neuronal polarity. Our results indicate that a-SMN and FL-SMN are needed for neuronal polarization and organization of axonal and dendritic compartments, processes that are fundamental for neuronal function and survival.


Asunto(s)
Diferenciación Celular/genética , Silenciador del Gen , Hipocampo/citología , Proyección Neuronal/genética , Neuronas/citología , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Animales , Dendritas/metabolismo , Homeostasis/genética , Fenotipo , Ratas
9.
Microsc Res Tech ; 78(6): 433-43, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25810353

RESUMEN

Confocal microscopy imaging of cells allows to visualize the presence of specific antigens by using fluorescent tags or fluorescent proteins, with resolution of few hundreds of nanometers, providing their localization in a large field-of-view and the understanding of their cellular function. Conversely, in scanning electron microscopy (SEM), the surface morphology of cells is imaged down to nanometer scale using secondary electrons. Combining both imaging techniques have brought to the correlative light and electron microscopy, contributing to investigate the existing relationships between biological surface structures and functions. Furthermore, in SEM, backscattered electrons (BSE) can image local compositional differences, like those due to nanosized gold particles labeling cellular surface antigens. To perform SEM imaging of cells, they could be grown on conducting substrates, but obtaining images of limited quality. Alternatively, they could be rendered electrically conductive, coating them with a thin metal layer. However, when BSE are collected to detect gold-labeled surface antigens, heavy metals cannot be used as coating material, as they would mask the BSE signal produced by the markers. Cell surface could be then coated with a thin layer of chromium, but this results in a loss of conductivity due to the fast chromium oxidation, if the samples come in contact with air. In order to overcome these major limitations, a thin layer of indium-tin-oxide was deposited by ion-sputtering on gold-decorated HeLa cells and neurons. Indium-tin-oxide was able to provide stable electrical conductivity and preservation of the BSE signal coming from the gold-conjugated markers.


Asunto(s)
Microscopía Confocal/métodos , Microscopía Electrónica de Rastreo/métodos , Compuestos de Estaño/análisis , Conductividad Eléctrica , Células HeLa , Humanos , Inmunohistoquímica , Método de Montecarlo , Coloración y Etiquetado
10.
Sci Technol Adv Mater ; 15(4): 045007, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27877708

RESUMEN

This paper reports on a novel application of an amphoteric water-soluble polyamidoamine named AGMA1 bearing 4-butylguanidine pendants. AGMA1 is an amphoteric, prevailingly cationic polyelectrolyte with isoelectric point of about 10. At pH 7.4 it is zwitterionic with an average of 0.55 excess positive charges per unit, notwithstanding it is highly biocompatible. In this work, it was found that AGMA1 surface-adsorbed on cell culturing coverslips exhibits excellent properties as adhesion and proliferation promoter of primary brain cells such as microglia, as well as of hippocampal neurons and astrocytes. Microglia cells cultured on AGMA1-coated coverslips substrate displayed the typical resting, ramified morphology of those cultured on poly-L-lysine and poly-L-ornithine, employed as reference substrates. Mixed cultures of primary astrocytes and neuronal cells grown on AGMA1- and poly-L-lysine coated coverslips were morphologically undistinguishable. On both substrates, neurons differentiated axon and dendrites and eventually established perfectly functional synaptic contacts. Quantitative immunocytochemical staining revealed no difference between AGMA1 and poly-L-lysine. Electrophysiological experiments allowed recording neuron spontaneous activity on AGMA1. In addition, cell cultures on both AGMA1 and PLL displayed comparable excitatory and inhibitory neurotransmission, demonstrating that the synaptic contacts formed were fully functional.

11.
Biol Cell ; 104(4): 213-28, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22188132

RESUMEN

BACKGROUND INFORMATION: ATP is the main transmitter stored and released from astrocytes under physiological and pathological conditions. Morphological and functional evidence suggest that besides secretory granules, secretory lysosomes release ATP. However, the molecular mechanisms involved in astrocytic lysosome fusion remain still unknown. RESULTS: In the present study, we identify tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP, also called VAMP7) as the vesicular SNARE which mediates secretory lysosome exocytosis, contributing to release of both ATP and cathepsin B from glial cells. We also demonstrate that fusion of secretory lysosomes is triggered by slow and locally restricted calcium elevations, distinct from calcium spikes which induce the fusion of glutamate-containing clear vesicles. Downregulation of TI-VAMP/VAMP7 expression inhibited the fusion of ATP-storing vesicles and ATP-mediated calcium wave propagation. TI-VAMP/VAMP7 downregulation also significantly reduced secretion of cathepsin B from glioma. CONCLUSIONS: Given that sustained ATP release from glia upon injury greatly contributes to secondary brain damage and cathepsin B plays a critical role in glioma dissemination, TI-VAMP silencing can represent a novel strategy to control lysosome fusion in pathological conditions.


Asunto(s)
Adenosina Trifosfato/metabolismo , Astrocitos/metabolismo , Calcio/metabolismo , Catepsina B/metabolismo , Lisosomas/metabolismo , Proteínas R-SNARE/metabolismo , Animales , Astrocitos/citología , Corteza Cerebral/citología , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Regulación hacia Abajo , Embrión de Mamíferos , Exocitosis , Glioma/metabolismo , Glioma/patología , Hipocampo/citología , Hipocampo/embriología , Hipocampo/metabolismo , Humanos , Fusión de Membrana , Neuroglía/citología , Neuroglía/metabolismo , Cultivo Primario de Células , Unión Proteica , Proteínas R-SNARE/antagonistas & inhibidores , Proteínas R-SNARE/genética , ARN Interferente Pequeño/genética , Ratas , Transducción de Señal , Transfección
12.
PLoS Biol ; 7(6): e1000138, 2009 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-19564905

RESUMEN

The regulation of filopodia plays a crucial role during neuronal development and synaptogenesis. Axonal filopodia, which are known to originate presynaptic specializations, are regulated in response to neurotrophic factors. The structural components of filopodia are actin filaments, whose dynamics and organization are controlled by ensembles of actin-binding proteins. How neurotrophic factors regulate these latter proteins remains, however, poorly defined. Here, using a combination of mouse genetic, biochemical, and cell biological assays, we show that genetic removal of Eps8, an actin-binding and regulatory protein enriched in the growth cones and developing processes of neurons, significantly augments the number and density of vasodilator-stimulated phosphoprotein (VASP)-dependent axonal filopodia. The reintroduction of Eps8 wild type (WT), but not an Eps8 capping-defective mutant, into primary hippocampal neurons restored axonal filopodia to WT levels. We further show that the actin barbed-end capping activity of Eps8 is inhibited by brain-derived neurotrophic factor (BDNF) treatment through MAPK-dependent phosphorylation of Eps8 residues S624 and T628. Additionally, an Eps8 mutant, impaired in the MAPK target sites (S624A/T628A), displays increased association to actin-rich structures, is resistant to BDNF-mediated release from microfilaments, and inhibits BDNF-induced filopodia. The opposite is observed for a phosphomimetic Eps8 (S624E/T628E) mutant. Thus, collectively, our data identify Eps8 as a critical capping protein in the regulation of axonal filopodia and delineate a molecular pathway by which BDNF, through MAPK-dependent phosphorylation of Eps8, stimulates axonal filopodia formation, a process with crucial impacts on neuronal development and synapse formation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Factor Neurotrófico Derivado del Encéfalo/farmacología , Proteínas del Citoesqueleto/metabolismo , Neuronas/efectos de los fármacos , Seudópodos/fisiología , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Axones/metabolismo , Axones/fisiología , Línea Celular , Células Cultivadas , Proteínas del Citoesqueleto/genética , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/citología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Fluorescente , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neuronas/citología , Neuronas/metabolismo , Fosforilación/efectos de los fármacos , Seudópodos/efectos de los fármacos , Seudópodos/metabolismo , Interferencia de ARN , Ratas , Transfección
13.
J Cell Biol ; 183(2): 213-21, 2008 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-18852301

RESUMEN

Activity-dependent secretion of brain-derived neurotrophic factor (BDNF) is thought to enhance synaptic plasticity, but the mechanisms controlling extracellular availability and clearance of secreted BDNF are poorly understood. We show that BDNF is secreted in its precursor form (pro-BDNF) and is then cleared from the extracellular space through rapid uptake by nearby astrocytes after theta-burst stimulation in layer II/III of cortical slices, a paradigm resulting in long-term potentiation of synaptic transmission. Internalization of pro-BDNF occurs via the formation of a complex with the pan-neurotrophin receptor p75 and subsequent clathrin-dependent endocytosis. Fluorescence-tagged pro-BDNF and real-time total internal reflection fluorescence microscopy in cultured astrocytes is used to monitor single endocytic vesicles in response to the neurotransmitter glutamate. We find that endocytosed pro-BDNF is routed into a fast recycling pathway for subsequent soluble NSF attachment protein receptor-dependent secretion. Thus, astrocytes contain an endocytic compartment competent for pro-BDNF recycling, suggesting a specialized form of bidirectional communication between neurons and glia.


Asunto(s)
Astrocitos/citología , Astrocitos/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Corteza Cerebral/citología , Endocitosis , Neurotransmisores/metabolismo , Precursores de Proteínas/metabolismo , Animales , Astrocitos/ultraestructura , Células Cultivadas , Clatrina/metabolismo , Ratones , Neuronas/citología , Neuronas/metabolismo , Ratas , Ratas Wistar , Receptor de Factor de Crecimiento Nervioso/metabolismo , Transmisión Sináptica , Vesículas Sinápticas/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...