Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Gen Subj ; 1863(4): 742-748, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30738906

RESUMEN

BACKGROUND: The ß-lactam antibiotics represent the most successful drug class for treatment of bacterial infections. Resistance to them, importantly via production of ß-lactamases, which collectively are able to hydrolyse all classes of ß-lactams, threatens their continued widespread use. Bicyclic boronates show potential as broad spectrum inhibitors of the mechanistically distinct serine- (SBL) and metallo- (MBL) ß-lactamase families. METHODS: Using biophysical methods, including crystallographic analysis, we have investigated the binding mode of bicyclic boronates to clinically important ß-lactamases. Induction experiments and agar-based MIC screening against MDR-Enterobacteriaceae (n = 132) were used to evaluate induction properties and the in vitro efficacy of a bicyclic boronate in combination with meropenem. RESULTS: Crystallographic analysis of a bicyclic boronate in complex with AmpC from Pseudomonas aeruginosa reveals it binds to form a tetrahedral boronate species. Microbiological studies on the clinical coverage (in combination with meropenem) and induction of ß-lactamases by bicyclic boronates further support the promise of such compounds as broad spectrum ß-lactamase inhibitors. CONCLUSIONS: Together with reported studies on the structural basis of their inhibition of class A, B and D ß-lactamases, biophysical studies, including crystallographic analysis, support the proposal that bicyclic boronates mimic tetrahedral intermediates common to SBL and MBL catalysis. GENERAL SIGNIFICANCE: Bicyclic boronates are a new generation of broad spectrum inhibitors of both SBLs and MBLs.


Asunto(s)
Antibacterianos/farmacología , Ácidos Borónicos/farmacología , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/metabolismo , Antibacterianos/química , Ácidos Borónicos/química , Cristalografía por Rayos X , Modelos Moleculares , Estructura Molecular , Pseudomonas aeruginosa/enzimología , Inhibidores de beta-Lactamasas/química
2.
Bioorg Med Chem ; 26(11): 2928-2936, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29655609

RESUMEN

Metallo-ß-lactamases (MBLs) enable bacterial resistance to almost all classes of ß-lactam antibiotics. We report studies on enethiol containing MBL inhibitors, which were prepared by rhodanine hydrolysis. The enethiols inhibit MBLs from different subclasses. Crystallographic analyses reveal that the enethiol sulphur displaces the di-Zn(II) ion bridging 'hydrolytic' water. In some, but not all, cases biophysical analyses provide evidence that rhodanine/enethiol inhibition involves formation of a ternary MBL enethiol rhodanine complex. The results demonstrate how low molecular weight active site Zn(II) chelating compounds can inhibit a range of clinically relevant MBLs and provide additional evidence for the potential of rhodanines to be hydrolysed to potent inhibitors of MBL protein fold and, maybe, other metallo-enzymes, perhaps contributing to the complex biological effects of rhodanines. The results imply that any medicinal chemistry studies employing rhodanines (and related scaffolds) as inhibitors should as a matter of course include testing of their hydrolysis products.


Asunto(s)
Rodanina/química , Compuestos de Sulfhidrilo/química , Inhibidores de beta-Lactamasas/síntesis química , beta-Lactamasas/química , Enediinos/química , Concentración 50 Inhibidora , Estructura Molecular , Rodanina/síntesis química , Rodanina/farmacología , Relación Estructura-Actividad , Compuestos de Sulfhidrilo/farmacología , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/efectos de los fármacos
3.
J Med Chem ; 61(3): 1255-1260, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29271657

RESUMEN

Zinc ion-dependent ß-lactamases (MBLs) catalyze the hydrolysis of almost all ß-lactam antibiotics and resist the action of clinically available ß-lactamase inhibitors. We report how application of in silico fragment-based molecular design employing thiol-mediated metal anchorage leads to potent MBL inhibitors. The new inhibitors manifest potent inhibition of clinically important B1 subfamily MBLs, including the widespread NDM-1, IMP-1, and VIM-2 enzymes; with lower potency, some of them also inhibit clinically relevant Class A and D serine-ß-lactamases. The inhibitors show selectivity for bacterial MBL enzymes compared to that for human MBL fold nucleases. Cocrystallization of one inhibitor, which shows potentiation of Meropenem activity against MBL-expressing Enterobacteriaceae, with VIM-2 reveals an unexpected binding mode, involving interactions with residues from conserved active site bordering loops.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Simulación por Computador , Diseño de Fármacos , Inhibidores de beta-Lactamasas/química , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/metabolismo , Evaluación Preclínica de Medicamentos , Modelos Moleculares , Conformación Proteica , Relación Estructura-Actividad , beta-Lactamasas/química
4.
Org Biomol Chem ; 15(28): 6024-6032, 2017 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-28678295

RESUMEN

The class D (OXA) serine ß-lactamases are a major cause of resistance to ß-lactam antibiotics. The class D enzymes are unique amongst ß-lactamases because they have a carbamylated lysine that acts as a general acid/base in catalysis. Previous crystallographic studies led to the proposal that ß-lactamase inhibitor avibactam targets OXA enzymes in part by promoting decarbamylation. Similarly, halide ions are proposed to inhibit OXA enzymes via decarbamylation. NMR analyses, in which the carbamylated lysines of OXA-10, -23 and -48 were 13C-labelled, indicate that reaction with avibactam does not ablate lysine carbamylation in solution. While halide ions did not decarbamylate the 13C-labelled OXA enzymes in the absence of substrate or inhibitor, avibactam-treated OXA enzymes were susceptible to decarbamylation mediated by halide ions, suggesting halide ions may inhibit OXA enzymes by promoting decarbamylation of acyl-enzyme complex. Crystal structures of the OXA-10 avibactam complex were obtained with bromide, iodide, and sodium ions bound between Trp-154 and Lys-70. Structures were also obtained wherein bromide and iodide ions occupy the position expected for the 'hydrolytic water' molecule. In contrast with some solution studies, Lys-70 was decarbamylated in these structures. These results reveal clear differences between crystallographic and solution studies on the interaction of class D ß-lactamases with avibactam and halides, and demonstrate the utility of 13C-NMR for studying lysine carbamylation in solution.


Asunto(s)
Compuestos de Azabiciclo/farmacología , Halógenos/farmacología , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/metabolismo , Compuestos de Azabiciclo/química , Isótopos de Carbono , Cristalografía por Rayos X , Halógenos/química , Iones/química , Iones/farmacología , Modelos Moleculares , Conformación Molecular , Inhibidores de beta-Lactamasas/química
5.
Artículo en Inglés | MEDLINE | ID: mdl-28115348

RESUMEN

ß-Lactamase-mediated resistance is a growing threat to the continued use of ß-lactam antibiotics. The use of the ß-lactam-based serine-ß-lactamase (SBL) inhibitors clavulanic acid, sulbactam, and tazobactam and, more recently, the non-ß-lactam inhibitor avibactam has extended the utility of ß-lactams against bacterial infections demonstrating resistance via these enzymes. These molecules are, however, ineffective against the metallo-ß-lactamases (MBLs), which catalyze their hydrolysis. To date, there are no clinically available metallo-ß-lactamase inhibitors. Coproduction of MBLs and SBLs in resistant infections is thus of major clinical concern. The development of "dual-action" inhibitors, targeting both SBLs and MBLs, is of interest, but this is considered difficult to achieve due to the structural and mechanistic differences between the two enzyme classes. We recently reported evidence that cyclic boronates can inhibit both serine- and metallo-ß-lactamases. Here we report that cyclic boronates are able to inhibit all four classes of ß-lactamase, including the class A extended spectrum ß-lactamase CTX-M-15, the class C enzyme AmpC from Pseudomonas aeruginosa, and class D OXA enzymes with carbapenem-hydrolyzing capabilities. We demonstrate that cyclic boronates can potentiate the use of ß-lactams against Gram-negative clinical isolates expressing a variety of ß-lactamases. Comparison of a crystal structure of a CTX-M-15:cyclic boronate complex with structures of cyclic boronates complexed with other ß-lactamases reveals remarkable conservation of the small-molecule binding mode, supporting our proposal that these molecules work by mimicking the common tetrahedral anionic intermediate present in both serine- and metallo-ß-lactamase catalysis.


Asunto(s)
Antibacterianos/farmacología , Ácidos Borónicos/farmacología , Enterobacteriaceae/efectos de los fármacos , Resistencia betalactámica/efectos de los fármacos , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/química , Secuencias de Aminoácidos , Antibacterianos/síntesis química , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Ácidos Borónicos/síntesis química , Clonación Molecular , Cristalografía por Rayos X , Ciclización , Enterobacteriaceae/enzimología , Enterobacteriaceae/genética , Enterobacteriaceae/crecimiento & desarrollo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Cinética , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Termodinámica , Resistencia betalactámica/genética , Inhibidores de beta-Lactamasas/síntesis química , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , beta-Lactamas/farmacología
6.
J Inorg Biochem ; 163: 185-193, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27498591

RESUMEN

Metallo-ß-lactamases (MBLs) catalyse the hydrolysis of almost all ß-lactam antibacterials including the latest generation carbapenems and are a growing worldwide clinical problem. It is proposed that MBLs employ one or two zinc ion cofactors in vivo. Isolated MBLs are reported to use transition metal ions other than zinc, including copper, cadmium and manganese, with iron ions being a notable exception. We report kinetic and biophysical studies with the di-iron(II)-substituted metallo-ß-lactamase II from Bacillus cereus (di-Fe(II) BcII) and the clinically relevant B1 subclass Verona integron-encoded metallo-ß-lactamase 2 (di-Fe(II) VIM-2). The results reveal that MBLs can employ ferrous iron in catalysis, but with altered kinetic and inhibition profiles compared to the zinc enzymes. A crystal structure of di-Fe(II) BcII reveals only small overall changes in the active site compared to the di-Zn(II) enzyme including retention of the di-metal bridging water; however, the positions of the metal ions are altered in the di-Fe(II) compared to the di-Zn(II) structure. Stopped-flow analyses reveal that the mechanism of nitrocefin hydrolysis by both di-Fe(II) BcII and di-Fe(II) VIM-2 is altered compared to the di-Zn(II) enzymes. Notably, given that the MBLs are the subject of current medicinal chemistry efforts, the results raise the possibility the Fe(II)-substituted MBLs may be of clinical relevance under conditions of low zinc availability, and reveal potential variation in inhibitor activity against the differently metallated MBLs.


Asunto(s)
Bacillus cereus/enzimología , Proteínas Bacterianas/química , Hierro/química , Metaloproteínas/química , beta-Lactamasas/química
7.
Nat Commun ; 7: 12406, 2016 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-27499424

RESUMEN

ß-Lactamases enable resistance to almost all ß-lactam antibiotics. Pioneering work revealed that acyclic boronic acids can act as 'transition state analogue' inhibitors of nucleophilic serine enzymes, including serine-ß-lactamases. Here we report biochemical and biophysical analyses revealing that cyclic boronates potently inhibit both nucleophilic serine and zinc-dependent ß-lactamases by a mechanism involving mimicking of the common tetrahedral intermediate. Cyclic boronates also potently inhibit the non-essential penicillin-binding protein PBP 5 by the same mechanism of action. The results open the way for development of dual action inhibitors effective against both serine- and metallo-ß-lactamases, and which could also have antimicrobial activity through inhibition of PBPs.


Asunto(s)
Ácidos Borónicos/farmacología , Inhibidores Enzimáticos/farmacología , Proteínas de Unión a las Penicilinas/antagonistas & inhibidores , Serina/metabolismo , beta-Lactamasas/química , Ácidos Borónicos/química , Ciclización , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Células HEK293 , Humanos , Pruebas de Sensibilidad Microbiana , Proteínas de Unión a las Penicilinas/metabolismo , Relación Estructura-Actividad , beta-Lactamasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...