Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Forensic Sci Res ; 9(2): owad052, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38765700

RESUMEN

Insertion/Deletion (InDel) polymorphisms, characterized by their smaller amplicons, reduced mutation rates, and compatibility with the prevalent capillary electrophoresis (CE) platforms in forensic laboratories, significantly contribute to the advancement and application of genetic analysis. Guizhou province in China serves as an important region for investigating the genetic structure, ethnic group origins, and human evolution. However, DNA data and the sampling of present-day populations are lacking, especially about the InDel markers. Here, we reported data on 47 autosomal InDels from 592 individuals from four populations in Guizhou (Han, Dong, Yi, and Chuanqing). Genotyping was performed with the AGCU InDel 50 kit to evaluate their utility for forensic purposes and to explore the population genetic structure. Our findings showed no significant deviations from Hardy-Weinberg and linkage equilibriums. The combined power of discrimination (CPD) and the combined power of exclusion (CPE) for each population demonstrated that the kit could be applied to forensic individual identification and was an effective supplement for parentage testing. Genetic structure analyses, including principal component analysis, multidimensional scaling, genetic distance calculation, STRUCTURE, and phylogenetic analysis, highlighted that the genetic proximity of the studied populations correlates with linguistic, geographical, and cultural factors. The observed genetic variances within four research populations were less pronounced than those discerned between populations across different regions. Notably, the Guizhou Han, Dong, and Chuanqing populations showed closer genetic affiliations with linguistically similar groups than the Guizhou Yi. These results underscore the potential of InDel markers in forensic science and provide insights into the genetic landscape and human evolution in multi-ethnic regions like Guizhou. Key points: InDel markers show promise for forensic individual identification and parentage testing via the AGCU InDel 50 kit.Genetic analysis of Guizhou populations reveals correlations with linguistic, geographical, and cultural factors.Guizhou Han, Dong, and Chuanqing populations showed closer genetic affiliations with linguistically similar groups than the Guizhou Yi.

2.
Chin J Traumatol ; 27(4): 187-199, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38631945

RESUMEN

PURPOSE: The toughest challenge in pedestrian traffic accident identification lies in ascertaining injury manners. This study aimed to systematically simulate and parameterize 3 types of craniocerebral injury including impact injury, fall injury, and run-over injury, to compare the injury response outcomes of different injury manners. METHODS: Based on the total human model for safety (THUMS) and its enhanced human model THUMS-hollow structures, a total of 84 simulations with 3 injury manners, different loading directions, and loading velocities were conducted. Von Mises stress, intracranial pressure, maximum principal strain, cumulative strain damage measure, shear stress, and cranial strain were employed to analyze the injury response of all areas of the brain. To examine the association between injury conditions and injury consequences, correlation analysis, principal component analysis, linear regression, and stepwise linear regression were utilized. RESULTS: There is a significant correlation observed between each criterion of skull and brain injury (p < 0.01 in all Pearson correlation analysis results). A 2-phase increase of cranio-cerebral stress and strain as impact speed increases. In high-speed impact (> 40 km/h), the Von Mises stress on the skull was with a high possibility exceed the threshold for skull fracture (100 MPa). When falling and making temporal and occipital contact with the ground, the opposite side of the impacted area experiences higher frequency stress concentration than contact at other conditions. Run-over injuries tend to have a more comprehensive craniocerebral injury, with greater overall deformation due to more adequate kinetic energy conduction. The mean value of maximum principal strain of brain and Von Mises stress of cranium at run-over condition are 1.39 and 403.8 MPa, while they were 1.31, 94.11 MPa and 0.64, 120.5 MPa for the impact and fall conditions, respectively. The impact velocity also plays a significant role in craniocerebral injury in impact and fall loading conditions (the p of all F-test < 0.05). A regression equation of the craniocerebral injury manners in pedestrian accidents was established. CONCLUSION: The study distinguished the craniocerebral injuries caused in different manners, elucidated the biomechanical mechanisms of craniocerebral injury, and provided a biomechanical foundation for the identification of craniocerebral injury in legal contexts.


Asunto(s)
Accidentes de Tránsito , Traumatismos Craneocerebrales , Análisis de Elementos Finitos , Peatones , Humanos , Fenómenos Biomecánicos , Estrés Mecánico
3.
Sensors (Basel) ; 24(7)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38610517

RESUMEN

In the precise point positioning/real-time kinematic (PPP-RTK) technique, high-precision ionospheric delay correction information is an important prerequisite for rapid PPP convergence. The commonly used ionospheric modeling approaches in the PPP-RTKs only take the trend term of the ionospheric total electron content (TEC) variations into account. As a result, the residual ionospheric delay still affects the positioning solutions. In this study, we propose a two-step regional ionospheric modeling approach that involves combining a polynomial fitting model (PFM) and a Kriging interpolation (KI) model. In the first step, a polynomial fitting method is used to model the trend term of the ionospheric TEC variations. In the second step, a KI method is used to compensate for the residual term of the ionospheric TEC variations. Datasets collected from continuously operating reference stations (CORSs) in Hunan Province, China, are used to validate the PFM/KI method by comparing with a single PFM method and a combined PFM and inverse distance weighting interpolation (IDWI) method. The experimental results show that the two-step PFM/KI modeled ionospheric delay achieves an average root mean square (RMS) error of 1.8 cm, which is improved by about 48% and 23% when compared with the PFM and PFM/IDWI methods, respectively. Regarding the positioning performance, the PPP-RTK with the PFM/KI method takes an average of 1.8 min or 4.0 min to converge to a positioning accuracy of 1.3 cm or 2.5 cm in the horizontal and vertical directions, respectively. The convergence times are decreased by about 18% and 14% in the horizontal direction and 9% and 5% in the vertical direction over the PFM and the PFM/IDWI methods, respectively.

4.
Sensors (Basel) ; 22(7)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35408418

RESUMEN

Traditionally, an elevation-angle-dependent weighting method is usually used for Global Navigation Satellite System (GNSS) positioning with a geodetic receiver. As smartphones adopt linearly polarized antenna and low-cost GNSS chips, different GNSS observation properties are exhibited. As a result, a carrier-to-noise ratio (C/N0)-dependent weighting method is mostly used for smartphone-based GNSS positioning. However, the C/N0 is subject to the effects of the observation environment, resulting in an unstable observation weight. In this study, we propose a combined elevation angle and C/N0 weighting method for smartphone-based GNSS precise point positioning (PPP) by normalizing the C/N0-derived variances to the scale of the elevation-angle-derived variances. The proposed weighting method is validated in two kinematic PPP tests with different satellite visibility conditions. Compared with the elevation-angle-only and C/N0-only weighting methods, the combined weighting method can effectively enhance the smartphone-based PPP accuracy in a three-dimensional position by 22.7% and 24.2% in an open-sky area, and by 52.0% and 26.0% in a constrained visibility area, respectively.

5.
Sensors (Basel) ; 19(24)2019 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-31888306

RESUMEN

The existence of colored noise in kinematic positioning will greatly degrade the accuracy of position solutions. This paper proposes a Kalman filter-based quad-constellation global navigation satellite system (GNSS) navigation algorithm with colored noise mitigation. In this algorithm, the observation colored noise and state colored noise models are established by utilizing their residuals in the past epochs, and then the colored noise is predicted using the models for mitigation in the current epoch in the integrated Global Positioning System (GPS)/GLObal NAvigation Satellite System (GLONASS)/BeiDou Navigation Satellite System (BDS)/Galileo navigation. Kinematic single point positioning (SPP) experiments under different satellite visibility conditions and road patterns are conducted to evaluate the effect of colored noise on the positioning accuracy for the quad-constellation combined navigation. Experiment results show that the colored noise model can fit the colored noise more effectively in the case of good satellite visibility. As a result, the positioning accuracy improvement is more significant after handling the colored noise. The three-dimensional positioning accuracy can be improved by 25.1%. Different satellite elevation cut-off angles of 10º, 20º and 30º are set to simulate different satellite visibility situations. Results indicate that the colored noise is decreased with the increment of the elevation cut-off angle. Consequently, the improvement of the SPP accuracy after handling the colored noise is gradually reduced from 27.3% to 16.6%. In the cases of straight and curved roads, the quad-constellation GNSS-SPP accuracy can be improved by 22.1% and 25.7% after taking the colored noise into account. The colored noise can be well-modeled and mitigated in both the straight and curved road conditions.

6.
Sensors (Basel) ; 18(12)2018 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-30477113

RESUMEN

High-rise buildings are susceptible to wind-induced displacements, which can be precisely monitored by using GPS technology. However, GPS monitoring applications may be subject to signal interference and high hardware costs. This study presents a new wind-induced vibration monitoring approach that is based on the mixed use of high-rate and low-rate GPS receivers. In the proposed approach, high-rate receivers are only required in the monitoring stations, where we apply time-differenced positioning to obtain position changes between adjacent epochs. The derived high-rate monitoring station position changes are then integrated with low-rate single epoch relative positioning results between the monitoring and reference stations. Experimental results with both simulated and real data show that the proposed method has a comparable performance with the traditional relative positioning approach, in terms of determining buildings' vibration frequency, displacement, and acceleration.

7.
Sensors (Basel) ; 17(6)2017 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-28587305

RESUMEN

The single-frequency precise point positioning (PPP) technique has attracted increasing attention due to its high accuracy and low cost. However, a very long convergence time, normally a few hours, is required in order to achieve a positioning accuracy level of a few centimeters. In this study, an approach is proposed to accelerate the single-frequency PPP convergence by combining quad-constellation global navigation satellite system (GNSS) and global ionospheric map (GIM) data. In this proposed approach, the GPS, GLONASS, BeiDou, and Galileo observations are directly used in an uncombined observation model and as a result the ionospheric and hardware delay (IHD) can be estimated together as a single unknown parameter. The IHD values acquired from the GIM product and the multi-GNSS differential code bias (DCB) product are then utilized as pseudo-observables of the IHD parameter in the observation model. A time varying weight scheme has also been proposed for the pseudo-observables to gradually decrease its contribution to the position solutions during the convergence period. To evaluate the proposed approach, datasets from twelve Multi-GNSS Experiment (MGEX) stations on seven consecutive days are processed and analyzed. The numerical results indicate that the single-frequency PPP with quad-constellation GNSS and GIM data are able to reduce the convergence time by 56%, 47%, 41% in the east, north, and up directions compared to the GPS-only single-frequency PPP.

8.
Sensors (Basel) ; 17(4)2017 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-28387744

RESUMEN

The carrier phase multipath effect is one of the most significant error sources in the precise positioning of BeiDou Navigation Satellite System (BDS). We analyzed the characteristics of BDS multipath, and found the multipath errors of geostationary earth orbit (GEO) satellite signals are systematic, whereas those of inclined geosynchronous orbit (IGSO) or medium earth orbit (MEO) satellites are both systematic and random. The modified multipath mitigation methods, including sidereal filtering algorithm and multipath hemispherical map (MHM) model, were used to improve BDS dynamic deformation monitoring. The results indicate that the sidereal filtering methods can reduce the root mean square (RMS) of positioning errors in the east, north and vertical coordinate directions by 15%, 37%, 25% and 18%, 51%, 27% in the coordinate and observation domains, respectively. By contrast, the MHM method can reduce the RMS by 22%, 52% and 27% on average. In addition, the BDS multipath errors in static baseline solutions are a few centimeters in multipath-rich environments, which is different from that of Global Positioning System (GPS) multipath. Therefore, we add a parameter representing the GEO multipath error in observation equation to the adjustment model to improve the precision of BDS static baseline solutions. And the results show that the modified model can achieve an average precision improvement of 82%, 54% and 68% in the east, north and up coordinate directions, respectively.

9.
Sensors (Basel) ; 14(9): 17530-47, 2014 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-25237901

RESUMEN

Precise point positioning (PPP) technology is mostly implemented with an ambiguity-float solution. Its performance may be further improved by performing ambiguity-fixed resolution. Currently, the PPP integer ambiguity resolutions (IARs) are mainly based on GPS-only measurements. The integration of GPS and GLONASS can speed up the convergence and increase the accuracy of float ambiguity estimates, which contributes to enhancing the success rate and reliability of fixing ambiguities. This paper presents an approach of combined GPS/GLONASS PPP with fixed GPS ambiguities (GGPPP-FGA) in which GPS ambiguities are fixed into integers, while all GLONASS ambiguities are kept as float values. An improved minimum constellation method (MCM) is proposed to enhance the efficiency of GPS ambiguity fixing. Datasets from 20 globally distributed stations on two consecutive days are employed to investigate the performance of the GGPPP-FGA, including the positioning accuracy, convergence time and the time to first fix (TTFF). All datasets are processed for a time span of three hours in three scenarios, i.e., the GPS ambiguity-float solution, the GPS ambiguity-fixed resolution and the GGPPP-FGA resolution. The results indicate that the performance of the GPS ambiguity-fixed resolutions is significantly better than that of the GPS ambiguity-float solutions. In addition, the GGPPP-FGA improves the positioning accuracy by 38%, 25% and 44% and reduces the convergence time by 36%, 36% and 29% in the east, north and up coordinate components over the GPS-only ambiguity-fixed resolutions, respectively. Moreover, the TTFF is reduced by 27% after adding GLONASS observations. Wilcoxon rank sum tests and chi-square two-sample tests are made to examine the significance of the improvement on the positioning accuracy, convergence time and TTFF.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...