RESUMEN
MAIN CONCLUSION: We comprehensively identified and analyzed the Snf2 gene family. Some Snf2 genes were involved in responding to salt stress based on the RNA-seq and qRT-PCR analysis. Sucrose nonfermenting 2 (Snf2) proteins are core components of chromatin remodeling complexes that not only alter DNA accessibility using the energy of ATP hydrolysis, but also play a critical regulatory role in growth, development, and stress response in eukaryotes. However, the comparative study of Snf2 gene family in the six Brassica species in U's triangle model remains unclear. Here, a total of 405 Snf2 genes were identified, comprising 53, 50, and 46 in the diploid progenitors: Brassica rapa (AA, 2n = 20), Brassica nigra (BB, 2n = 16), and Brassica oleracea (CC, 2n = 18), and 93, 91, and 72 in the allotetraploid: Brassica juncea (AABB, 2n = 36), Brassica napus (AACC, 2n = 38), and Brassica carinata (BBCC, 2n = 34), respectively. These genes were classified into six clades and further divided into 18 subfamilies based on their conserved motifs and domains. Intriguingly, these genes showed highly conserved chromosomal distributions and gene structures, indicating that few dynamic changes occurred during the polyploidization. The duplication modes of the six Brassica species were diverse, and the expansion of most Snf2 in Brassica occurred primarily through dispersed duplication (DSD) events. Additionally, the majority of Snf2 genes were under purifying selection during polyploidization, and some Snf2 genes were associated with various abiotic stresses. Both RNA-seq and qRT-PCR analysis showed that the expression of BnaSnf2 genes was significantly induced under salt stress, implying their involvement in salt tolerance response in Brassica species. The results provide a comprehensive understanding of the Snf2 genes in U's triangle model species, which will facilitate further functional analysis of the Snf2 genes in Brassica plants.
Asunto(s)
Brassica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Estrés Salino , Brassica/genética , Brassica/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Salino/genética , Familia de Multigenes , Filogenia , Genoma de Planta/genética , Perfilación de la Expresión GénicaRESUMEN
In China, saline-alkali lands constitute 5.01% of the total land area, having a significant impact on both domestic and international food production. Rapeseed (Brassica napus L.), as one of the most important oilseed crops in China, has garnered considerable attention due to its potential adaptability to saline conditions. Breeding and improving salt-tolerant varieties is a key strategy for the effective utilization of saline lands. Hence, it is important to conduct comprehensive research into the adaptability and salt tolerance mechanisms of Brassica napus in saline environments as well as to breed novel salt-tolerant varieties. This review summarizes the molecular mechanism of salt tolerance, physiological and phenotypic indexes, research strategies for the screening of salt-tolerant germplasm resources, and genetic engineering tools for salt stress in Brassica napus. It also introduces various agronomic strategies for applying exogenous substances to alleviate salt stress and provide technological tools and research directions for future research on salt tolerance in Brassica napus.
RESUMEN
Sclerotinia stem rot (SSR), caused by the necrotrophic fungus Sclerotinia sclerotiorum, is one of the most devastating diseases for several major oil-producing crops. Despite its impact, the genetic basis of SSR resistance in plants remains poorly understood. Here, through a genome-wide association study, we identify a key gene, BnaA07. MKK9, that encodes a mitogen-activated protein kinase kinase that confers SSR resistance in oilseed rape. Our functional analyses reveal that BnaA07.MKK9 interacts with BnaC03.MPK3 and BnaC03.MPK6 and phosphorylates them at the TEY activation motif, triggering a signaling cascade that initiates biosynthesis of ethylene, camalexin, and indole glucosinolates, and promotes accumulation of H2O2 and the hypersensitive response, ultimately conferring resistance. Furthermore, variations in the coding sequence of BnaA07.MKK9 alter its kinase activity and improve SSR resistance by ~30% in cultivars carrying the advantageous haplotype. These findings enhance our understanding of SSR resistance and may help engineer novel diversity for future breeding of oilseed rape.
Asunto(s)
Ascomicetos , Brassica napus , Resistencia a la Enfermedad , Estudio de Asociación del Genoma Completo , Enfermedades de las Plantas , Proteínas de Plantas , Ascomicetos/genética , Ascomicetos/patogenicidad , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brassica napus/microbiología , Brassica napus/genética , Brassica napus/inmunología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Regulación de la Expresión Génica de las Plantas , Fosforilación , Variación GenéticaRESUMEN
The isochorismate synthase (ICS) proteins are essential regulators of salicylic acid (SA) synthesis, which has been reported to regulate resistance to biotic and abiotic stresses in plants. Clubroot caused by Plasmodiophora brassicae is a common disease that threatens the yield and quality of Oilseed rape (Brassica napus L.). Exogenous application of salicylic acid reduced the incidence of clubroot in oilseed rape. However, the potential importance of the ICS genes family in B. napus and its diploid progenitors has been unclear. Here, we identified 16, 9, and 10 ICS genes in the allotetraploid B. napus, diploid ancestor Brassica rapa and Brassica oleracea, respectively. These ICS genes were classified into three subfamilies (I-III), and member of the same subfamilies showed relatively conserved gene structures, motifs, and protein domains. Furthermore, many hormone-response and stress-related promoter cis-acting elements were observed in the BnaICS genes. Exogenous application of SA delayed the growth of clubroot galls, and the expression of BnaICS genes was significantly different compared to the control groups. Protein-protein interaction analysis identified 58 proteins involved in the regulation of ICS in response to P. brassicae in B. napus. These results provide new clues for understanding the resistance mechanism to P. brassicae.
Asunto(s)
Brassica napus , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas , Plasmodiophorida , Brassica napus/parasitología , Brassica napus/genética , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Familia de Multigenes , Ácido Salicílico/farmacología , Ácido Salicílico/metabolismo , Genoma de Planta , Transferasas IntramolecularesRESUMEN
MAIN CONCLUSIONS: A novel image-based screening method for precisely identifying genotypic variations in rapeseed RSA under waterlogging stress was developed. Five key root traits were confirmed as good indicators of waterlogging and might be employed in breeding, particularly when using the MFVW approach. Waterlogging is a vital environmental factor that has detrimental effects on the growth and development of rapeseed (Brassica napus L.). Plant roots suffer from hypoxia under waterlogging, which ultimately confers yield penalty. Therefore, it is crucially important to understand the genetic variation of root system architecture (RSA) in response to waterlogging stress to guide the selection of new tolerant cultivars with favorable roots. This research was conducted to investigate RSA traits using image-based screening techniques to better understand how RSA changes over time during waterlogging at the seedling stage. First, we performed a t-test by comparing the relative root trait value between four tolerant and four sensitive accessions. The most important root characteristics associated with waterlogging tolerance at 12 h are total root length (TRL), total root surface area (TRSA), total root volume (TRV), total number of tips (TNT), and total number of forks (TNF). The root structures of 448 rapeseed accessions with or without waterlogging showed notable genetic diversity, and all traits were generally restrained under waterlogging conditions, except for the total root average diameter. Additionally, according to the evaluation and integration analysis of 448 accessions, we identified that five traits, TRL, TRSA, TRV, TNT, and TNF, were the most reliable traits for screening waterlogging-tolerant accessions. Using analysis of the membership function value (MFVW) and D-value of the five selected traits, 25 extremely waterlogging-tolerant materials were screened out. Waterlogging significantly reduced RSA, inhibiting root growth compared to the control. Additionally, waterlogging increased lipid peroxidation, accompanied by a decrease in the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). This study effectively improves our understanding of the response of RSA to waterlogging. The image-based screening method developed in this study provides a new scientific guidance for quickly examining the basic RSA changes and precisely predicting waterlogging-tolerant rapeseed germplasms, thus expanding the genetic diversity of waterlogging-tolerant rapeseed germplasm available for breeding.
Asunto(s)
Brassica napus , Brassica rapa , Fitomejoramiento , Plantones/fisiología , Fenotipo , GenotipoRESUMEN
The cultivated diploid Brassica oleracea is an important vegetable crop, but the genetic basis of its domestication remains largely unclear in the absence of high-quality reference genomes of wild B. oleracea. Here, we report the first chromosome-level assembly of the wild Brassica oleracea L. W03 genome (total genome size, 630.7 Mb; scaffold N50, 64.6 Mb). Using the newly assembled W03 genome, we constructed a gene-based B. oleracea pangenome and identified 29 744 core genes, 23 306 dispensable genes, and 1896 private genes. We re-sequenced 53 accessions, representing six potential wild B. oleracea progenitor species. The results of the population genomic analysis showed that the wild B. oleracea populations had the highest level of diversity and represents the most closely related population to modern-day horticultural B. oleracea. In addition, the WUSCHEL gene was found to play a decisive role in domestication and to be involved in cauliflower and broccoli curd formation. We also illustrate the loss of disease-resistance genes during selection for domestication. Our results provide new insights into the domestication of B. oleracea and will facilitate the future genetic improvement of Brassica crops.
Asunto(s)
Brassica , Productos Agrícolas , Domesticación , Genoma de Planta , Brassica/genética , Productos Agrícolas/genética , Cromosomas de las Plantas/genéticaRESUMEN
Rapeseed (Brassica napus L.) is one of the most important oil crops in China. Improving the oil production of rapeseed is an important way to ensure the safety of edible oil in China. Oil production is an important index that reflects the quality of rapeseed and is determined by the oil content and yield. Applying nitrogen is an important way to ensure a strong and stable yield. However, the seed oil content has been shown to be reduced in most rapeseed varieties after nitrogen application. Thus, it is critical to screen elite germplasm resources with stable or improved oil content under high levels of nitrogen, and to investigate the molecular mechanisms of the regulation by nitrogen of oil accumulation. However, few studies on these aspects have been published. In this review, we analyze the effect of nitrogen on the growth and development of rapeseed, including photosynthetic assimilation, substance distribution, and the synthesis of lipids and proteins. In this process, the expression levels of genes related to nitrogen absorption, assimilation, and transport changed after nitrogen application, which enhanced the ability of carbon and nitrogen assimilation and increased biomass, thus leading to a higher yield. After a crop enters the reproductive growth phase, photosynthates in the body are transported to the developing seed for protein and lipid synthesis. However, protein synthesis precedes lipid synthesis, and a large number of photosynthates are consumed during protein synthesis, which weakens lipid synthesis. Moreover, we suggest several research directions, especially for exploring genes involved in lipid and protein accumulation under nitrogen regulation. In this study, we summarize the effects of nitrogen at both the physiological and molecular levels, aiming to reveal the mechanisms of nitrogen regulation in oil accumulation and, thereby, provide a theoretical basis for breeding varieties with a high oil content.
Asunto(s)
Brassica napus , Brassica rapa , Brassica napus/genética , Brassica napus/metabolismo , Aceites de Plantas/metabolismo , Nitrógeno/metabolismo , Fitomejoramiento , Brassica rapa/metabolismo , Semillas/metabolismoRESUMEN
Nitrogen (N) is one of the most important mineral elements for plant growth and development and a key factor for improving crop yield. Rapeseed, Brassica napus, is the largest oil crop in China, producing more than 50% of the domestic vegetable oil. However, high N fertilizer input with low utilization efficiency not only increases the production cost but also causes serious environmental pollution. Therefore, the breeding of rapeseed with high N efficiency is of great strategic significance to ensure the security of grain and oil and the sustainable development of the rapeseed industry. In order to provide reference for genetic improvement of rapeseed N-efficient utilization, in this article, we mainly reviewed the recent research progress of rapeseed N efficiency, including rapeseed N efficiency evaluation, N-efficient germplasm screening, and N-efficient physiological and molecular genetic mechanisms.
Asunto(s)
Brassica napus , Brassica rapa , Brassica napus/genética , Nitrógeno , Fitomejoramiento , Brassica rapa/genética , Aceites de PlantasRESUMEN
Brassica oleracea displays remarkable morphological variations. It intrigued researchers to study the underlying cause of the enormous diversification of this organism. However, genomic variations in complex heading traits are less known in B. oleracea. Herein, we performed a comparative population genomics analysis to explore structural variations (SVs) responsible for heading trait formation in B. oleracea. Synteny analysis showed that chromosomes C1 and C2 of B. oleracea (CC) shared strong collinearity with A01 and A02 of B. rapa (AA), respectively. Two historical events, whole genome triplication (WGT) of Brassica species and differentiation time between AA and CC genomes, were observed clearly by phylogenetic and Ks analysis. By comparing heading and non-heading populations of B. oleracea genomes, we found extensive SVs during the diversification of the B. oleracea genome. We identified 1205 SVs that have an impact on 545 genes and might be associated with the heading trait of cabbage. Overlapping the genes affected by SVs and the differentially expressed genes identified by RNA-seq analysis, we identified six vital candidate genes that may be related to heading trait formation in cabbage. Further, qRT-PCR experiments also verified that six genes were differentially expressed between heading leaves and non-heading leaves, respectively. Collectively, we used available genomes to conduct a comparison population genome analysis and identify candidate genes for the heading trait of cabbage, which provides insight into the underlying reason for heading trait formation in B. oleracea.
Asunto(s)
Brassica , Genoma de Planta , Filogenia , Brassica/genética , SinteníaRESUMEN
Clubroot caused by Plasmodiophora brassicae led to a significant decrease in the yield and quality of Brassica napus, one of the most important oil crops in the world. JAZ proteins are an essential repressor of jasmonates (JAs) signaling cascades, which have been reported to regulate the resistance to P. brassicae in B. napus. In this study, we identified 51, 25 and 26 JAZ proteins in B. napus, B. rapa and B. oleracea, respectively. Phylogenetic analysis displayed that the notedJAZ proteins were divided into six groups. The JAZ proteins clustered in the same group shared a similar motif composition and distribution order. The 51 BnaJAZs were not evenly assigned on seventeen chromosomes in B. napus, except for A04 and C07. The BnaJAZs of the AtJAZ7/AtJAZ8 group presented themselves to be significantly up-regulated after inoculation by P. brassicae. Variation analysis in a population with a specific resistance performance in P. brassicae displayed a 64 bp translocation in BnaC03T0663300ZS (BnaJAZ8.C03, homologous to AtJAZ8) with an 8% reduction in the disease index on average. Through protein-protein interaction analysis, 65 genes were identified that might be involved in JAZ8 regulation of resistance to P. brassicae in B. napus, which provided new clues for understanding the resistance mechanism to P. brassicae.
Asunto(s)
Brassica napus , Plasmodiophorida , Plasmodiophorida/fisiología , Brassica napus/genética , Resistencia a la Enfermedad/genética , Filogenia , Enfermedades de las Plantas/genéticaRESUMEN
KEY MESSAGE: A major QTL controlling ovule abortion and SN was fine-mapped to a 80.1-kb region on A8 in rapeseed, and BnaA08g07940D and BnaA08g07950D are the most likely candidate genes. The seed number per silique (SN), an important yield determining trait of rapeseed, is the final consequence of a complex developmental process including ovule initiation and the subsequent ovule/seed development. To explore the genetic mechanism regulating the natural variation of SN and its related components, quantitative trait locus (QTL) mapping was conducted using a doubled haploid (DH) population derived from the cross between C4-146 and C4-58B, which showed significant differences in SN and aborted ovule number (AON), but no obvious differences in ovule number (ON). QTL analysis identified 19 consensus QTLs for six SN-related traits across three environments. A novel QTL on chromosome A8, un.A8, which associates with multiple traits, except for ON, was stably detected across the three environments. This QTL explained more than 50% of the SN, AON and percentage of aborted ovules (PAO) variations as well as a moderate contribution on silique length (SL) and thousand seed weight (TSW). The C4-146 allele at the locus increases SN and SL but decreases AON, PAO and TSW. Further fine mapping narrowed down this locus into an 80.1-kb interval flanked by markers BM1668 and BM1672, and six predicted genes were annotated in the delimited region. Expression analyses and DNA sequencing showed that two homologs of Arabidopsis photosystem I subunit F (BnaA08g07940D) and zinc transporter 10 precursor (BnaA08g07950D) were the most promising candidate genes underlying this locus. These results provide a solid basis for cloning un.A8 to reduce the ovule abortion and increase SN in the yield improvement of rapeseed.
Asunto(s)
Brassica napus/crecimiento & desarrollo , Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Regulación de la Expresión Génica de las Plantas , Óvulo Vegetal/fisiología , Proteínas de Plantas/metabolismo , Semillas/crecimiento & desarrollo , Brassica napus/genética , Clonación Molecular , Fenotipo , Proteínas de Plantas/genética , Semillas/genéticaRESUMEN
BACKGROUND: Lipid transporters play an essential role in lipid delivery and distribution, but their influence on seed oil production in oilseed crops is not well studied. RESULTS: Here, we examined the effect of two lipid transporters, FAX1 (fatty acid export1) and ABCA9 (ATP-binding cassette transporter subfamily A9) on oil production and lipid metabolism in the oilseed plant Camelina sativa. Overexpression (OE) of FAX1 and ABCA9 increased seed weight and size, with FAX1-OEs and ABCA9-OEs increasing seed length and width, respectively, whereas FAX1/ABCA9-OEs increasing both. FAX1-OE and ABCA9-OE displayed additive effects on seed oil content and seed yield. Also, OE of FAX1 and ABCA9 affected membrane lipid composition in developing pods, especially on phosphatidylcholine, phosphatidylethanolamine, and phosphatidylglycerol. The expression of some genes involved in seed oil synthesis, such as DGAT2, PDAT1, and LEC1, was increased in developing seeds of FAX1- and/or ABCA9-OEs. CONCLUSION: These results indicate that increased expression of FAX1 and ABCA9 can potentially be applied to improving camelina oil production.
RESUMEN
Patatinrelated phospholipases (pPLAs) are acylhydrolyzing enzymes implicated in various processes, including lipid metabolism, signal transduction, plant growth and stress responses, but the function for many specific pPLAs in plants remains unknown. Here we determine the effect of patatinrelated phospholipase A pPLAIIIγ on Arabidopsis response to abiotic stress. Knockout of pPLAIIIγ rendered plants more sensitive whereas overexpression of pPLAIIIγ enhanced plant tolerance to NaCl and drought in seed germination and seedling growth. The pPLAIIIγknockout and overexpressing seedlings displayed a lower and higher level of lysolipids and free fatty acids than that of wildtype plants in response to NaCl stress, respectively. These results indicate that pPLAIIIγ acts a positive regulator of salt and osmatic stress tolerance in Arabidopsis.
RESUMEN
Lipid catabolism in germinating seeds provides energy and substrates for initial seedling growth, but how this process is regulated is not well understood. Here, we show that an AT-hook motif-containing nuclear localized (AHL) protein regulates lipid mobilization and fatty acid ß-oxidation during seed germination and seedling establishment. AHL4 was identified to directly interact with the lipid mediator phosphatidic acid (PA). Knockout (KO) of AHL4 enhanced, but overexpression (OE) of AHL4 attenuated, triacylglycerol (TAG) degradation and seedling growth. Normal seedling growth of the OE lines was restored by sucrose supplementation to the growth medium. AHL4-OE seedlings displayed decreased expression of genes involved in TAG hydrolysis and fatty acid oxidation, whereas the opposite was observed in AHL4-KOs. These genes contained AHL4-binding cis elements, and AHL4 was shown to bind to the promoter regions of genes encoding the TAG lipases SDP1 and DALL5 and acyl-thioesterase KAT5. These AHL4-DNA interactions were suppressed by PA species that bound to AHL4. These results indicate that AHL4 suppresses lipid catabolism by repressing the expression of specific genes involved in TAG hydrolysis and fatty acid oxidation, and that PA relieves AHL4-mediated suppression and promotes TAG degradation. Thus, AHL4 and PA together regulate lipid degradation during seed germination and seedling establishment.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Metabolismo de los Lípidos/genética , Plantones/genética , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , ADN de Plantas/metabolismo , Ácidos Grasos Insaturados/metabolismo , Técnicas de Inactivación de Genes , Ácidos Fosfatidicos/metabolismo , Unión Proteica , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Factores de Transcripción/genética , Triglicéridos/metabolismoRESUMEN
Plant oils are valuable commodities for food, feed, renewable industrial feedstocks and biofuels. To increase vegetable oil production, here we show that the nonspecific phospholipase C6 (NPC6) promotes seed oil production in the Brassicaceae seed oil species Arabidopsis, Camelina and oilseed rape. Overexpression of NPC6 increased seed oil content, seed weight and oil yield both in Arabidopsis and Camelina, whereas knockout of NPC6 decreased seed oil content and seed size. NPC6 is associated with the chloroplasts and microsomal membranes, and hydrolyzes phosphatidylcholine and galactolipids to produce diacylglycerol. Knockout and overexpression of NPC6 decreased and increased, respectively, the flux of fatty acids from phospholipids and galactolipids into triacylglycerol production. Candidate-gene association study in oilseed rape indicates that only BnNPC6.C01 of the four homeologues NPC6s is associated with seed oil content and yield. Haplotypic analysis indicates that the BnNPC6.C01 favorable haplotype can increase both seed oil content and seed yield. These results indicate that NPC6 promotes membrane glycerolipid turnover to accumulate TAG production in oil seeds and that NPC6 has a great application potential for oil yield improvement.
Asunto(s)
Brassicaceae , Brassicaceae/genética , Ácidos Grasos , Fosfolipasas , Aceites de Plantas , Plantas Modificadas Genéticamente , SemillasRESUMEN
One of the most important goals in the breeding of oilseed crops, including Brassica napus, is to improve the quality of edible vegetable oil, which is mainly determined by the seed fatty acid composition, particularly the C18:1 content. Previous studies have indicated that the C18:1 content is a polygenic trait, and no stable quantitative trait loci (QTLs) except for FAD2 have been reported. By performing a GWAS using 375 low erucic acid B. napus accessions genotyped with the Brassica 60K SNP array and constructing a high-density SNP-based genetic map of a 150 DH population, we identified a novel QTL on the A9 chromosome. The novel locus could explain 11.25%, 5.72% and 6.29% of phenotypic variation during three consecutive seasons and increased the C18:1 content by approximately 3%-5%. By fine mapping and gene expression analysis, we found three potential candidate genes and verified the fatty acids in a homologous gene mutant of Arabidopsis. A metal ion-binding protein was found to be the most likely candidate gene in the region. Thus, the C18:1 content can be further increased to about 80% with this novel locus together with FAD2 mutant allele without compromise of agronomic performance. A closely linked marker, BnA129, for this novel QTL (OLEA9) was developed so that we can effectively identify materials with high C18:1 content at an early growth stage by marker-assisted selection. Our results may also provide new insight for understanding the complex genetic mechanism of fatty acid metabolism.
Asunto(s)
Brassica napus/genética , Ácido Oléico/química , Sitios de Carácter Cuantitativo , Brassica napus/química , Mapeo Cromosómico , Cromosomas de las Plantas , SemillasRESUMEN
Vegetable oil is an essential constituent of the human diet and renewable raw material for industrial applications. Enhancing oil production by increasing seed oil content in oil crops is the most viable, environmentally friendly, and sustainable approach to meet the continuous demand for the supply of vegetable oil globally. An in-depth understanding of the gene networks involved in oil biosynthesis during seed development is a prerequisite for breeding high-oil-content varieties. Rapeseed (Brassica napus) is one of the most important oil crops cultivated on multiple continents, contributing more than 15% of the world's edible oil supply. To understand the phasic nature of oil biosynthesis and the dynamic regulation of key pathways for effective oil accumulation in B. napus, comparative transcriptomic profiling was performed with developing seeds and silique wall (SW) tissues of two contrasting inbred lines with ~13% difference in seed oil content. Differentially expressed genes (DEGs) between high- and low-oil content lines were identified across six key developmental stages, and gene enrichment analysis revealed that genes related to photosynthesis, metabolism, carbohydrates, lipids, phytohormones, transporters, and triacylglycerol and fatty acid synthesis tended to be upregulated in the high-oil-content line. Differentially regulated DEG patterns were revealed for the control of metabolite and photosynthate production in SW and oil biosynthesis and accumulation in seeds. Quantitative assays of carbohydrates and hormones during seed development together with gene expression profiling of relevant pathways revealed their fundamental effects on effective oil accumulation. Our results thus provide insights into the molecular basis of high seed oil content (SOC) and a new direction for developing high-SOC rapeseed and other oil crops.
Asunto(s)
Brassica napus/genética , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Aceites de Plantas/metabolismo , Semillas/genética , Transcriptoma , Brassica napus/metabolismo , Perfilación de la Expresión Génica , Genes de Plantas , Redes y Vías Metabólicas , Semillas/metabolismoRESUMEN
Sclerotinia stem rot (SSR) caused by the necrotrophic fungus Sclerotinia sclerotiorum is a major disease in rapeseed (Brassica napus) worldwide. Breeding for SSR resistance in B. napus, as in other crops, relies only on germplasms with quantitative resistance genes. A better understanding of the genetic basis for SSR resistance in B. napus thus holds promise for the genetic improvement of disease resistance. In the present study, a genome-wide association study (GWAS) for SSR resistance in B. napus were performed using an association panel of 448 accessions genotyped with the Brassica 60K Infinium® single-nucleotide polymorphism (SNP) array. A total of 26 SNPs corresponding to three loci, DSRC4, DSRC6, and DSRC8 were associated with SSR resistance. Haplotype analysis showed that the three favorable alleles for SSR resistance exhibited cumulative effects. After aligning SSR resistance quantitative trait loci (QTL) identified in the present and previous studies to the B. napus reference genome, one locus (DSRC6) was found to be located within the confidence interval of a QTL identified in previous QTL mapping studies and another two loci (DSRC4 and DSRC8) were considered novel loci for SSR resistance. A total of 39 candidate genes were predicted for the three loci based on the GWAS combining with the differentially expressed genes identified in previous transcriptomics analyses.
RESUMEN
An optimized plant architecture (PA) is fundamental for high-yield breeding but the genetic control of the important trait is largely unknown in rapeseed. Here plant architecture factors (PAFs) were proposed to consist of main inflorescence length proportion (MILP), branch height proportion (BHP), and branch segment proportion (BSP). Comparison of different genotypes in a DH population grown in diverse environments showed that an optimized PAF performance with MILP and BHP between 0.3-0.4 was important for high yield potential. In total, 163 unique quantitative trait loci (QTLs) for PA- and plant yield (PY)-related traits were mapped onto a high-density genetic map. Furthermore, 190 PA-related candidate genes for 91 unique PA QTLs and 2350 PY epistatic interaction loci-pairs were identified, which explain 2.8-51.8% and 5.2-23.6% of phenotypic variation, respectively. Three gene categories, transcription factor, auxin/IAA, and gibberellin, comprise the largest proportions of candidate genes for PA-related QTLs. The effectiveness of QTL candidate genes prediction was demonstrated by cloning of three candidate genes, Bna.A02.CLV2, Bna.A09.SLY2, and Bna.C07.AHK4. The study thus outlines a gene network for control of PA-related traits and provides novel information for understanding the establishment of ideal PA and for developing effective breeding strategies for yield improvement in rapeseed and other crops.