Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 916: 170411, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38280597

RESUMEN

The synergy effects between earthworms and microorganisms promote nitrogen mineralization and enhance stabilization of organic matters in a vermicomposting system. However, the stabilization pathways of vermicomposting in the system remain unknown. The aim of this study was to investigate the effect of earthworms on the stabilization pathway and associated microbial population of waste activated sludge recycled by vermicomposting. The treatment of sludge with and without earthworms was conducted at 20 °C for 60 days. The trends in organic matter (OM), dissolved organic carbon (DOC), NH4+-N, electrical conductivity (EC), microbial biomass carbon (MBC), and dehydrogenase activity (DHA) were similar in both systems over time. At the end of the treatment, OM and DOC were significantly lower (p < 0.05), and EC, NH4+-N, and NO3--N were significantly higher (p < 0.05) in the vermicomposting group than in the control. Based on the statistical results of principal component analysis (PCA), it was proposed that the stabilization pathway in both treatment systems required a sequence of reactions characterized by the degradation of organic matter, accumulation of dissolved organic carbon, ammonification, and nitrification. Vermicomposting led to greater abundance and diversity (Shannon index) of 16S rDNA microbial species, but more even distribution in microbial community composition (Simpson index) than the control. However, the opposite performance for 18S rDNA microbes was observed. Vermicomposting enhanced the abundance of microorganisms involved in organic matter degradation and nitrification, facilitating the conversion of organic matter and favoring the nitrification. In short, the pathway of sludge bio-stabilization is not altered regardless of the addition of earthworms or not, which enables us to better understand vermicomposting process of sludge.


Asunto(s)
Oligoquetos , Aguas del Alcantarillado , Animales , Oligoquetos/metabolismo , Materia Orgánica Disuelta , Nitrificación , ADN Ribosómico , Suelo
2.
Cell Biosci ; 13(1): 219, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38037142

RESUMEN

BACKGROUND: Metabolic homeostasis is closely related to early impairment of cell fate determination and embryo development. The protein kinase mechanistic target of rapamycin (mTOR) is a key regulator of cellular metabolism in the body. Inhibition of mTOR signaling in early embryo causes postimplantation development failure, yet the mechanisms are still poorly understood. METHODS: Pregnancy mice and preimplantation mouse embryo were treated with mTOR inhibitor in vivo and in vitro respectively, and subsequently examined the blastocyst formation, implantation, and post-implantation development. We used immunofluorescence staining, RNA-Seq smart2, and genome-wide bisulfite sequencing technologies to investigate the impact of mTOR inhibitors on the quality, cell fate determination, and molecular alterations in developing embryos. RESULTS: We showed mTOR suppression during preimplantation decreases the rate of blastocyst formation and the competency of implantation, impairs the post implantation embryonic development. We discovered that blocking mTOR signaling negatively affected the transformation of 8-cell embryos into blastocysts and caused various deficiencies in blastocyst quality. These included problems with compromised trophectoderm cell differentiation, as well as disruptions in cell fate specification. mTOR suppression significantly affected the transcription and DNA methylation of embryos. Treatment with mTOR inhibitors increase lysosomal activation and disrupts the organization and dynamics of the actin cytoskeleton in blastocysts. CONCLUSIONS: These results demonstrate that mTOR plays a crucial role in 8-cell to blastocyst transition and safeguards embryo quality during early embryo development.

3.
Pathogens ; 12(11)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38003764

RESUMEN

Catabolite control protein A (CcpA), an important global regulatory protein, is extensively found in S. aureus. Many studies have reported that CcpA plays a pivotal role in regulating the tricarboxylic acid cycle and pathogenicity. Moreover, the CcpA-knockout Staphylococcus aureus (S. aureus) in diabetic mice, compared with the wild-type, showed a reduced colonization rate in the tissues and organs and decreased inflammatory factor expression. However, the effect of CcpA-knockout S. aureus on the host's energy metabolism in a high-glucose environment and its mechanism of action remain unclear. S. aureus, a common and major human pathogen, is increasingly found in patients with obesity and diabetes, as recent clinical data reveal. To address this issue, we generated CcpA-knockout S. aureus strains with different genetic backgrounds to conduct in-depth investigations. In vitro experiments with high-glucose-treated cells and an in vivo model study with type 1 diabetic mice were used to evaluate the unknown effect of CcpA-knockout strains on both the glucose and lipid metabolism phenotypes of the host. We found that the strains caused an abnormal metabolic phenotype in type 1 diabetic mice, particularly in reducing random and fasting blood glucose and increasing triglyceride and fatty acid contents in the serum. In a high-glucose environment, CcpA-knockout S. aureus may activate the hepatic STAT5/PDK4 pathway and affect pyruvate utilization. An abnormal metabolic phenotype was thus observed in diabetic mice. Our findings provide a better understanding of the molecular mechanism of glucose and lipid metabolism disorders in diabetic patients infected with S. aureus.

4.
Int J Nanomedicine ; 17: 5547-5563, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36444194

RESUMEN

Introduction: Lack of highly expressed tumor target and ligands limits application of nano-medicine against triple-negative breast cancer (TNBC). Previous study reported that placenta-derived oncofetal chondroitin sulfate glycosaminoglycan chain (CSA) expressed on 90% of stage I-III invasive ductal breast carcinomas. Our study found the CSA anchor protein VAR2CSA derived small peptide plCSA had strong binding activity with TNBC cell lines and tumor tissue. Here, we combined the AIEgens TBZ-DPNA and therapy drug paclitaxel (PTX) to fabricate near-infrared fluorescence-guided nanodrug (plCSA-NP) to investigate its targeting and anti-tumor effect on TNBC. Methods: We synthesized and purified TBZ-DPNA with one step, measured optical properties and photoluminescence (PL) spectra. We prepared nanodrug plCSA-NP by encapsulating TBZ-DPNA and PTX and conjugating them with peptide plCSA. We evaluated plCSA-NP targeting activity by examining AIEdots fluorescence signal on TNBC cell lines and subcutaneous and lung metastatic mouse model. We assessed PTX delivery effect by cytotoxicity assay on TNBC line and tumor growth of subcutaneous and lung metastatic mouse models. Results: PL spectra and TEM imaging results showed plCSA-NP had maximum emission feature at 718 nm and nearly monodispersed nanosphere with an average diameter of 70 nm. In vitro studies showed plCSA-NPs had high affinity and cytotoxicity with TNBC cell lines. In vivo subcutaneous and lung metastasis mouse studies showed plCSA-NPs accumulated on TNBC tumor tissue, and significantly prevented TNBC subcutaneous and lung metastasis tumor growth. Conclusion: In conclusion, we provide solid evidence for chondroitin sulfate targeting peptide plCSA guided nanodrug, exhibit good targeting efficiency and therapeutic effect against TNBC primary and lung metastatic tumor growth.


Asunto(s)
Neoplasias Pulmonares , Nanosferas , Neoplasias de la Mama Triple Negativas , Animales , Ratones , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Sulfatos de Condroitina , Neoplasias Pulmonares/tratamiento farmacológico , Paclitaxel/farmacología , Modelos Animales de Enfermedad , Pulmón
5.
Cell Death Dis ; 13(3): 218, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35264562

RESUMEN

Thyroid cancer (TC) is one of the most common malignancies involving the head and neck, and its incidences are increasing every year. Small G protein signaling modulators 2 (SGSM2) belongs to a newly identified protein group that contributes to numerous cancer progression. However, its role in TC remains unknown. The aim of this study was to explore the functions and underlying molecular mechanism of SGSM2 in the progression of thyroid tumorigenesis. Here, we demonstrated that SGSM2 expression was markedly decreased in TC, and that lower SGSM2 expression was potentially related to worse patient prognosis. Meanwhile, the SGSM2 levels were not directly correlated with BRAF or RAS mutations in TC. Based on our functional analysis, ectopic SGSM2 expression strongly prevented cell proliferation, migration, invasion, and tumorigenic activity in TC cells that harbored wild type RAS. Mechanistically, we demonstrated that SGSM2 interacted with Small G protein Ras-associated protein 1(RAP1) and augmented its activity. Activated RAP1 then competitively suppressed RAS activation and thereby downregulated output of MAPK/ERK and PI3K/Akt networks, which are primary contributors of TC. In summary, the present study reports a tumor suppressive role of SGSM2 in TC. Moreover, we revealed the underlying molecular mechanism, thus providing a potential therapeutic target for TCs that harbor wild type RAS.


Asunto(s)
Proteínas de Unión al GTP Monoméricas , Neoplasias de la Tiroides , Línea Celular Tumoral , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Complejo Shelterina , Transducción de Señal/genética , Proteínas de Unión a Telómeros , Neoplasias de la Tiroides/metabolismo
6.
J Exp Clin Cancer Res ; 40(1): 34, 2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33468157

RESUMEN

BACKGROUND: BRAFV600E mutation is the most common mutation in thyroid cancer. It strongly activates MAPK/ERK pathway and indicates an invasive subtype of thyroid cancer. PLX4032 is a selective oral inhibitor of the BRAFV600 kinase although with limited effect in treating this panel of thyroid cancer, due to the feedback activation of MAPK/ERK as well as PI3K/AKT pathways. It was investigated that Vitamin C plays a positive role in inhibiting these pathways in thyroid cancer. However, whether Vitamin C could enhance the antitumor effect of PLX4032 remains largely unclear. METHODS: The antitumor efficacy of combination therapy with PLX4032 and Vitamin C on BRAFMT thyroid cancer cell was assessed by the MTT assay, EdU assay and colony formation, Chou-Talalay way was employed to analyze the synergistic effect. Flow cytometry were employed to assess cells' apoptosis and cell cycle arrest in response to combination therapy. Xenograft models were used to test its in vivo antitumor activity. Western blot and IHC were applied to investigate the mechanism underlying synergistic effect. RESULTS: PLX4032 or Vitamin C monotherapy was mildly effective in treating BRAFMT thyroid cancer cell and xenografts model. The combination therapy significantly inhibited cancer cell proliferation and tumor growth in nude mice, and induced cell apoptosis and cell cycle arrest compared to either monotherapy. PLX4032 monotherapy induced feedback activation of MAPK/ERK as well as PI3K/AKT pathway; while combination therapy significantly relieved this feedback. CONCLUSION: Vitamin C promotes the antitumor effect of PLX4032 in BRAFMT thyroid cancer cell and xenografts model via relieving the feedback activation of MAPK/ERK as well as PI3K/AKT pathway. PLX4032/Vitamin C combination may be a potential therapeutic approach to treat BRAFMT thyroid cancer.


Asunto(s)
Ácido Ascórbico/uso terapéutico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Inhibidores de Proteínas Quinasas/uso terapéutico , Neoplasias de la Tiroides/tratamiento farmacológico , Vemurafenib/uso terapéutico , Animales , Ácido Ascórbico/farmacología , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Desnudos , Inhibidores de Proteínas Quinasas/farmacología , Neoplasias de la Tiroides/patología , Vemurafenib/farmacología
7.
Mol Ther Oncolytics ; 18: 602-612, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-33005727

RESUMEN

The adipokine chemerin has been considered an important regulator of tumor immune surveillance. Chemerin recruits leukocytes through the receptor CMKLR1 to improve clinical outcomes of tumors and overall patient survival, but the role of GPR1 in tumors has not been widely investigated. Here, we found that GPR1 expression is elevated in breast cancer-especially triple-negative breast cancer (TNBC) tissues and cell lines. Herein, we screened a phage display peptide library to identify LRH7-G5, a peptide antagonist that blocks chemerin/GPR1 signaling. This peptide performed as an anticancer agent to suppress the proliferation of the TNBC cell lines MDA-MB-231 and HCC1937 but has little effect on T47D cells. LRH7-G5 treatment significantly blocked tumor growth in a TNBC cell-bearing orthotopic mouse model. Last, our results showed that this peptide's antitumor role is mediated through the PI3K/AKT signaling pathway. In conclusion, these data collectively suggest that the chemerin receptor GPR1 is a novel target for controlling TNBC progression and establish peptide LRH7-G5 as a new therapeutic agent for suppressing TNBC tumor growth.

8.
Food Chem Toxicol ; 121: 622-630, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30268796

RESUMEN

Tanshinone IIA is one of the most predominant bioactive constituents of Danshen, a traditional Chinese medicinal plant with multiple cardiovascular protective actions. Although Tanshinone IIA has been well documented for its endothelial protective efficacy, studies unveiling the mechanism and/or molecular targets for its pharmacological activity are still inadequate. In recent studies, it has been envisaged that the expression of pentraxin 3 (PTX3) was associated with atherosclerotic cardiovascular diseases (ACVD). Therefore, the current study was designed to evaluate the possible role of Tanshinone IIA in influencing the expression of PTX3 in endothelial cells and thereby prevents endothelial dysfunction. Molecular analyses through real-time PCR, western blot, and ELISA revealed that Tanshinone IIA down-regulates PTX3 gene expression as well as protein secretion in human endothelial cells in the presence or absence of TNF-α. Besides, Tanshinone IIA inhibits the adhesion of THP1 cells (a monocytic cell line) to activated-endothelial cells stimulated with TNF-α. Furthermore, mechanistic studies uncovered the role of p38 MAPK/NF-κB pathway in Tanshinone II-A mediated pharmacological effects. Thus, the present study exemplifies the manifestation of Tanshinone IIA as a plausible alternative natural remedy for ACVD by targeting PTX3.


Asunto(s)
Abietanos/farmacología , Proteína C-Reactiva/metabolismo , Células Endoteliales/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Monocitos/efectos de los fármacos , Componente Amiloide P Sérico/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Proteína C-Reactiva/genética , Adhesión Celular , Línea Celular , Supervivencia Celular , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Estructura Molecular , Monocitos/fisiología , FN-kappa B/metabolismo , Interferencia de ARN , Componente Amiloide P Sérico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...