Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Clin Nutr ; 43(6): 1475-1487, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723301

RESUMEN

BACKGROUND & AIMS: The past few decades have witnessed a rapid growth in the prevalence of nonalcoholic fatty liver disease (NAFLD). While the ketogenic diet (KD) is considered for managing NAFLD, the safety and efficacy of the KD on NAFLD has been a controversial topic. Here, we aimed to investigate the effect of KD of different durations on metabolic endpoints in mice with NAFLD and explore the underlying mechanisms. METHODS: NAFLD mice were fed with KD for 1, 2, 4 and 6 weeks, respectively. The blood biochemical indexes (blood lipids, AST, ALT and etc.) and liver fat were measured. The LC-MS/MS based proteomic analysis was performed on liver tissues. Metallothionein-2 (MT2) was knocked down with adeno-associated virus (AAV) or small interfering RNA (siRNA) in NAFLD mice and AML-12 cells, respectively. H&E, BODIPY and ROS staining were performed to examine lipid deposition and oxidative stress. Furthermore, MT2 protein levels, nucleus/cytoplasm distribution and DNA binding activity of peroxisome proliferators-activated receptors α (PPARα) were evaluated. RESULTS: KD feeding for 2 weeks showed the best improvement on NAFLD phenotype. Proteomic analysis revealed that MT2 was a key candidate for different metabolic endpoints of NAFLD affected by different durations of KD feeding. MT2 knockdown in NAFLD mice blocked the effects of 2 weeks of KD feeding on HFD-induced steatosis. In mouse primary hepatocytes and AML-12 cells, MT2 protein levels were induced by ß-hydroxybutyric acid (ß-OHB). MT2 Knockdown blunted the effects of ß-OHB on alleviating PA-induced lipid deposition. Mechanistically, 2 weeks of KD or ß-OHB treatment reduced oxidative stress and upregulated the protein levels of MT2 in nucleus, which subsequently increased its DNA binding activity and PPARα protein expression. CONCLUSIONS: Collectively, these findings indicated that KD feeding prevented NAFLD in a time dependent manner and MT2 is a potential target contributing to KD improvement on steatosis.


Asunto(s)
Dieta Cetogénica , Metalotioneína , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico , Estrés Oxidativo , Regulación hacia Arriba , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Enfermedad del Hígado Graso no Alcohólico/genética , Metalotioneína/genética , Metalotioneína/metabolismo , Dieta Cetogénica/métodos , Ratones , Masculino , Hígado/metabolismo , Antioxidantes/metabolismo , PPAR alfa/metabolismo , PPAR alfa/genética , Modelos Animales de Enfermedad , Metabolismo de los Lípidos , Factores de Tiempo
2.
Redox Biol ; 69: 103002, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38142583

RESUMEN

Lipid peroxidation and redox imbalance are hallmarks of ferroptosis, an iron-dependent form of cell death. Growing evidence suggests that dysregulation in glycolipid metabolism and iron homeostasis substantially contribute to the development of hepatocellular carcinoma (HCC). However, there is still a lack of comprehensive understanding regarding the specific transcription factors that are capable of coordinating glycolipid and redox homeostasis to initiate the onset of ferroptosis. We discovered that overexpression of SOX8 leads to impaired mitochondria integrate, increased oxidative stress, and enhanced lipid peroxidation. These effects can be attributed to the inhibitory impact of SOX8 on de novo lipogenesis, glycolysis, the tricarboxylic acid cycle (TCA), and the pentose phosphate pathway (PPP). Additionally, upregulation of SOX8 results in reduced synthesis of NADPH, disturbance of redox homeostasis, disruption of mitochondrial structure, and impairment of the electron transport chain. Furthermore, the overexpression of SOX8 enhances the process of ferroptosis by upregulating the expression of genes associated with ferroptosis and elevating intracellular levels of ferrous ion. Importantly, the overexpressing of SOX8 has been observed to inhibit the proliferation of HCC in immunodeficient animal models. In conclusion, the findings suggest that SOX8 has the ability to alter glycolipid and iron metabolism of HCC cells, hence triggering the process of ferroptosis. The results of our study present a novel strategy for targeting ferroptosis in the therapy of HCC.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Neoplasias Hepáticas , Animales , Carcinoma Hepatocelular/genética , Ferroptosis/genética , Neoplasias Hepáticas/genética , Glucolípidos , Hierro
3.
Int J Biol Sci ; 19(6): 1925-1940, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063423

RESUMEN

Background: Fatty acid oxidation (FAO) is a major alternate energy metabolism pathway in tumor cells subjected to metabolic stress caused by glucose deficiency during rapid progression. However, the mechanism of metabolic reprogramming between glycolysis and FAO in tumor cells is unknown. Therefore, identifying the metabolic glucolipid conversion hub in tumor cells is crucial. Methods: We used single-cell RNA sequencing (scRNA-Seq), RNA sequencing (RNA-Seq), The Cancer Genome Atlas (TCGA), and chromatin immunoprecipitation sequencing (ChIP-Seq) to predict the critical regulator and mechanism of metabolic glucolipid conversion in colorectal cancer (CRC) tumor cells. We used Seahorse metabolic analysis, immunoblotting, immunofluorescence, and immunohistochemical (IHC) technology to verify the prediction and mechanism of this regulator in cancer cell lines, a nude mouse xenograft model, and clinical CRC samples. Results: We demonstrated that sirtuin-1 (SIRT1) was upregulated in CRC cells in response to glucose deprivation and oxidative stress. SIRT1 was also a hub of metabolic glucolipid conversion. SIRT1 upregulation deacetylated ß-catenin, translocated it from the nucleus to the cytoplasm, attenuated glycolysis, and was positively correlated with fatty acid oxidation (FAO). Clinical analysis of SIRT1 expression in tumor tissues showed the SIRT1High profile was associated with poor prognosis in CRC patients. SIRT1 interference therapy significantly suppressed tumors in the mouse xenograft model. Conclusions: In hostile, glucose-deficient TMEs, SIRT1 is upregulated, and CRC cells transform the Warburg phenotype to FAO. SIRT1 indicates the frequency of glucolipid transformation and rapid tumor progression and is a promising therapeutic target of CRC.


Asunto(s)
Neoplasias Colorrectales , Humanos , Ratones , Animales , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo , Glucosa/metabolismo , Ácidos Grasos , Regulación Neoplásica de la Expresión Génica , Proliferación Celular/genética
4.
Mol Ther ; 30(6): 2342-2353, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35192934

RESUMEN

Type 2 diabetes mellitus (DM2) is associated closely with non-alcoholic fatty liver disease (NAFLD) by affecting lipid metabolism, which may lead to non-alcoholic steatohepatitis (NASH), fibrosis, and hepatocellular carcinoma (HCC). N6-methyladenosine (m6A) RNA methylation is an important epigenetic regulation for gene expression and is related to HCC development. We developed a new NAFLD model oriented from DM2 mouse, which spontaneously progressed to histological features of NASH, fibrosis, and HCC with high incidence. By RNA sequencing, protein expression and methylated RNA immunoprecipitation (MeRIP)-qPCR analysis, we found that enhanced expression of ACLY and SCD1 in this NAFLD model and human HCC samples was due to excessive m6A modification, but not elevation of mature SREBP1. Moreover, targeting METTL3/14 in vitro increases protein level of ACLY and SCD1 as well as triglyceride and cholesterol production and accumulation of lipid droplets. m6A sequencing analysis revealed that overexpressed METTL14 binds to mRNA of ACLY and SCD1 and alters their expression pattern. Our findings demonstrate a new NAFLD mouse model that provides a study platform for DM2-related NAFLD and reveals a unique epitranscriptional regulating mechanism for lipid metabolism via m6A-modified protein expression of ACLY and SCD1.


Asunto(s)
Carcinoma Hepatocelular , Diabetes Mellitus Tipo 2 , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Animales , Carcinoma Hepatocelular/patología , Diabetes Mellitus Tipo 2/genética , Epigénesis Genética , Fibrosis , Lipogénesis/genética , Neoplasias Hepáticas/metabolismo , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , ARN Mensajero/genética
5.
Mol Cancer Res ; 18(12): 1863-1875, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32873626

RESUMEN

Due to its intricate heterogeneity and limited treatment, hepatocellular carcinoma (HCC) has been considered a major cause of cancer-related mortality worldwide. Increasing evidence indicates that G-protein-coupled estrogen receptor 1 (GPER1) can promote estrogen-dependent hepatocellular proliferation by activating AKT signaling. The mTOR complex 2 (mTORC2), whose integrity and activity are modulated by its subunit Sin1, controls the activation of AKT by phosphorylation at position S473. In this study, we investigate the modulation of Sin1 and how estrogen signaling may influence the mTORC2-AKT cascade in HCC cells and a DEN-induced mouse model. We have found that estradiol-dependent Sin1 expression is transcriptionally modulated by GPER1 as well as ERα. GPER1 is able to regulate Sin1 stability via nuclear translocation, therefore increasing Sin1-mTORC2-AKT activation. Moreover, Sin1 interacts with ERα and further enhances its transcriptional activity. Sin1 is highly expressed in acute liver injury and in cases of HCC harboring high expression of GPER1 and constitutive activation of mTORC2-AKT signaling. GPER1 inhibition using the antagonist G-15 reverses DEN-induced acute liver injury by suppressing Sin1 expression and mTORC2-AKT activation. Notably, SIN1 expression varies between male and female mice in the context of both liver injury and liver cancer. In addition, high SIN1 expression is predictive of good prognosis in both male and female patients with HCC who are free from hepatitis virus infection and who report low alcohol consumption. Hence, here we demonstrate that Sin1 can be regulated by GPER1 both through nongenomic and indirect genomic signaling. IMPLICATIONS: This study suggests that Sin1 may be a novel HCC biomarker which is gender-dependent and sensitive to particular risk factor.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Carcinoma Hepatocelular/metabolismo , Receptor alfa de Estrógeno/metabolismo , Estrógenos/farmacología , Neoplasias Hepáticas/metabolismo , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Animales , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Femenino , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Masculino , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Ratones , Trasplante de Neoplasias , Estabilidad Proteica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Caracteres Sexuales , Transducción de Señal , Regulación hacia Arriba
6.
Life Sci ; 248: 117449, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32088212

RESUMEN

AIMS: Prostate cancer (PCa) is the most common type of cancer and a major cause of death in men worldwide. Aberrant Androgen receptor (AR) and PI3K-AKT signaling are very frequent in PCa patients and, therefore, considered as therapeutic targets in the clinic. Sin1 is an essential component of mTORC2 complex, which determines full AKT activation and PCa development in PTEN-/- mice. Here we examined the role of Sin1 in human PCa cell lines and respective tumor samples. MAIN METHODS: Western blotting and immunohistochemistry (IHC) were performed to analyze the expression of Sin1-mTORC2-AKT related proteins in human PCa cells, as well as prostate tumors and normal tissue counterparts. Cell viability and invasion assays were also pursued in the presence or not of Sin1 in PCa cells. Immunoprecipitation assays were additionally carried out to examine the interaction of Sin1 with AR. KEY FINDINGS: We have presently demonstrated that high levels of Sin1 expression in human PCa tissues correlate with cancer progression. Sin1-mediated cell proliferation and invasion of PCa cells occurs by regulating mTORC2-AKT signaling, epithelial-mesenchymal transition and matrix metalloproteinases. Moreover, androgens are able to induce Sin1 expression, which is further translocated to the nucleus of PCa cells. Finally, Sin1 interacts with AR to suppress its transcriptional activity. SIGNIFICANCE: Taken together, these data indicate that both Sin1-mediated mTORC2-AKT signaling and Sin1-AR interaction regulate PCa development. Hence, Sin1 may be considered a novel biomarker of PCa progression.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Regulación Neoplásica de la Expresión Génica , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Neoplasias de la Próstata/genética , Proteínas Proto-Oncogénicas c-akt/genética , Receptores Androgénicos/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal/genética , Humanos , Masculino , Metaloproteinasas de la Matriz/genética , Metaloproteinasas de la Matriz/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Invasividad Neoplásica , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Androgénicos/metabolismo , Transducción de Señal , Análisis de Matrices Tisulares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...