Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(7): e26791, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38586373

RESUMEN

Efferocytosis of apoptotic neutrophils (PMNs) by macrophages is helpful for inflammation resolution and injury repair, but the role of efferocytosis in intrinsic nature of macrophages during septic acute kidney injury (AKI) remains unknown. Here we report that CD47 and signal regulatory protein alpha (SIRPα)-the anti-efferocytotic 'don't eat me' signals-are highly expressed in peripheral blood mononuclear cells (PBMCs) from patients with septic AKI and kidney samples from mice with polymicrobial sepsis and endotoxin shock. Conditional knockout (CKO) of SIRPA in macrophages ameliorates AKI and systemic inflammation response in septic mice, accompanied by an escalation in mitophagy inhibition of macrophages. Ablation of SIRPA transcriptionally downregulates solute carrier family 22 member 5 (SLC22A5) in the lipopolysaccharide (LPS)-stimulated macrophages that efferocytose apoptotic neutrophils (PMNs). Targeting SLC22A5 renders mitophagy inhibition of macrophages in response to LPS stimuli, improves survival and deters development of septic AKI. Our study supports further clinical investigation of CD47-SIRPα signalling in sepsis and proposes that SLC22A5 might be a promising immunotherapeutic target for septic AKI.

2.
Exp Cell Res ; 433(1): 113804, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37806378

RESUMEN

Alcohol dehydrogenase 1 (ADH1) is an alcohol-oxidizing enzyme with poorlydefined biology. Here we report that ADH1 is highly expressed in kidneys of mice with lethal endotoxemia and is transcriptionally upregulated in tubular cells by lipopolysaccharide (LPS) stimuli through TLR4/NF-κB cascade. The Adh1 knockout (Adh1KO) mice with lethal endotoxemia displayed increased susceptibility to acute kidney injury (AKI) but not systemic inflammatory response. Adh1KO mice develop more severe tubular cell apoptosis in comparison to Adh1 wild-type (Adh1WT) mice during course of lethal endotoxemia. ADH1 deficiency facilitates the LPS-induced tubular cell apoptosis in a caspase-dependent manner. Mechanistically, ADH1 deficiency dampens tubular mitophagy that relies on PINK1-Parkin pathway characterized by the reduced membrane potential, reactive oxygen species (ROS) and release of fragmented mtDNA to cytosol. Kidney-specific overexpression of PINK1 and Parkin by adeno-associated viral vector 9 (AAV9) delivery ameliorates AKI exacerbation in Adh1KO mice with lethal endotoxemia. Our study supports the notion that ADH1 is critical for blockade of tubular apoptosis mediated by mitophagy, allowing the rapid identification and targeting of alcohol-metabolic route applicable to septic AKI.

3.
J Appl Stat ; 50(13): 2836-2856, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37720244

RESUMEN

Random forest is a popular prediction approach for handling high dimensional covariates. However, it often becomes infeasible to interpret the obtained high dimensional and non-parametric model. Aiming for an interpretable predictive model, we develop a forward variable selection method using the continuous ranked probability score (CRPS) as the loss function. eOur stepwise procedure selects at each step a variable that minimizes the CRPS risk and a stopping criterion for selection is designed based on an estimation of the CRPS risk difference of two consecutive steps. We provide mathematical motivation for our method by proving that in a population sense, the method attains the optimal set. In a simulation study, we compare the performance of our method with an existing variable selection method, for different sample sizes and correlation strength of covariates. Our method is observed to have a much lower false positive rate. We also demonstrate an application of our method to statistical post-processing of daily maximum temperature forecasts in the Netherlands. Our method selects about 10% covariates while retaining the same predictive power.

4.
Life Sci ; 322: 121653, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37011875

RESUMEN

AIMS: Inflammation-coupling tubular damage (ICTD) contributes to pathogenesis of septic acute kidney injury (AKI), in which insulin-like growth factor-binding protein 7 (IGFBP-7) serves as a biomarker for risk stratification. The current study aims to discern how IGFBP-7 signalling influences ICTD, the mechanisms that underlie this process and whether blockade of the IGFBP-7-dependent ICTD might have therapeutic value for septic AKI. MATERIALS AND METHODS: In vivo characterization was carried out in B6/JGpt-Igfbp7em1Cd1165/Gpt mice subjected to cecal ligation and puncture (CLP). Transmission electron microscopy, immunofluorescence, flow cytometry, immunoblotting, ELISA, RT-qPCR and dual-luciferase reporter assays were used to determine mitochondrial functions, cell apoptosis, cytokine secretion and gene transcription. KEY FINDINGS: ICTD augments the transcriptional activity and protein secretion of tubular IGFBP-7, which enables an auto- and paracrine signalling via deactivation of IGF-1 receptor (IGF-1R). Genetic knockout (KO) of IGFBP-7 provides renal protection, improves survival and resolves inflammation in murine models of cecal ligation and puncture (CLP), while administering recombinant IGFBP-7 aggravates ICTD and inflammatory invasion. IGFBP-7 perpetuates ICTD in a NIX/BNIP3-indispensable fashion through dampening mitophagy that restricts redox robustness and preserves mitochondrial clearance programs. Adeno-associated viral vector 9 (AAV9)-NIX short hairpin RNA (shRNA) delivery ameliorates the anti-septic AKI phenotypes of IGFBP-7 KO. Activation of BNIP3-mediated mitophagy by mitochonic acid-5 (MA-5) effectively attenuates the IGFBP-7-dependent ICTD and septic AKI in CLP mice. SIGNIFICANCE: Our findings identify IGFBP-7 is an auto- and paracrine manipulator of NIX-mediated mitophagy for ICTD escalation and propose that targeting the IGFBP-7-dependent ICTD represents a novel therapeutic strategy against septic AKI.


Asunto(s)
Lesión Renal Aguda , Sepsis , Somatomedinas , Ratones , Animales , Mitofagia/fisiología , Lesión Renal Aguda/metabolismo , Sepsis/metabolismo , Inflamación/complicaciones , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo
5.
Int J Biol Sci ; 18(13): 5168-5184, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35982894

RESUMEN

High-dose ascorbate confers tubular mitophagy responsible for septic acute kidney injury (AKI) amelioration, yet its biological roles in immune regulation remain poorly understood. Methods: The role of tubular mitophagy in macrophage polarization upon high-dose ascorbate treatment was assessed by fluorescence-activated cell sorter analysis (FACS) in vitro and by immunofluorescence in AKI models of LPS-induced endotoxemia (LIE) from Pax8-cre; Atg7 flox/flox mice. The underlying mechanisms were revealed by RNA-sequencing, gene set enrichment analysis (GSEA), luciferase reporter, chromatin immunoprecipitation (ChIP) and adeno-associated viral vector serotype 9 (AAV9) delivery assays. Results: High-dose ascorbate enables conversion of macrophages from a pro-inflammatory M1 subtype to an anti-inflammatory M2 subtype in murine AKI models of LIE, leading to decreased renal IL-1ß and IL-18 production, reduced mortality and alleviated tubulotoxicity. Blockade of tubular mitophagy abrogates anti-inflammatory macrophages polarization under the high-dose ascorbate-exposed coculture systems. Similar abrogations are verified in LIE mice with tubular epithelium-specific ablation of Atg7, where the high-dose ascorbate-inducible renal protection and survival improvement are substantially weaker than their control littermates. Mechanistically, high-dose ascorbate stimulates tubular secretion of serpin family G member 1 (SerpinG1) through maintenance of mitophagy, for which nuclear factor-erythroid 2 related factor 2 (NRF2) transactivation is required. SerpinG1 perpetuates anti-inflammatory macrophages to prevent septic AKI, while kidney-specific disruption of SerpinG1 by adeno-associated viral vector serotype 9 (AAV9)-short hairpin RNA (shRNA) delivery thwarts the anti-inflammatory macrophages polarization and anti-septic AKI efficacy of high-dose ascorbate. Conclusion: Our study identifies SerpinG1 as an intermediate of tubular mitophagy-orchestrated myeloid function during septic AKI and reveals a novel rationale for ascorbate-based therapy.


Asunto(s)
Lesión Renal Aguda , Ácido Ascórbico , Proteína Inhibidora del Complemento C1 , Macrófagos , Factor 2 Relacionado con NF-E2 , Lesión Renal Aguda/tratamiento farmacológico , Animales , Ácido Ascórbico/farmacología , Proteína Inhibidora del Complemento C1/genética , Riñón , Túbulos Renales/metabolismo , Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/genética , Activación Transcripcional
6.
Clin Cancer Res ; 23(22): 7108-7118, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-28912140

RESUMEN

Purpose: To investigate the role and the underlying mechanism of scaffold attachment factor B (SAFB) in the progression of colorectal cancer (CRC).Experimental Design: SAFB expression was analyzed in the Cancer Outlier Profile Analysis of Oncomine and in 175 paraffin-embedded archived CRC tissues. Gene Ontology analyses were performed to explore the mechanism of SAFB in CRC progression. Western blot, RT-PCR, luciferase assay, and chromatin immunoprecipitation (ChIP) were used to detect the regulation of transforming growth factor-ß-activated kinase 1 (TAK1) and NF-κB signaling by SAFB The role of SAFB in invasion, metastasis, and angiogenesis was investigated using in vitro and in vivo assays. The relationship between SAFB and TAK1 was analyzed in CRC tissues.Results: SAFB was downregulated in CRC tissues, and low expression of SAFB was significantly associated with an aggressive phenotype and poorer survival of CRC patients. The downregulation of SAFB activated NF-κB signaling by targeting the TAK1 promoter. Ectopic expression of SAFB inhibited the development of aggressive features and metastasis of CRC cells both in vitro and in vivo The overexpression of TAK1 could rescue the aggressive features in SAFB-overexpressed cells. Furthermore, the expression of SAFB in CRC tissues was negatively correlated with the expression of TAK1- and NF-κB-related genes.Conclusions: Our results show that SAFB regulated the activity of NF-κB signaling in CRC by targeting TAK1 This novel mechanism provides a comprehensive understanding of both SAFB and the NF-κB signaling pathway in the progression of CRC and indicates that the SAFB-TAK1-NF-κB axis is a potential target for early therapeutic intervention in CRC progression. Clin Cancer Res; 23(22); 7108-18. ©2017 AACR.


Asunto(s)
Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Regulación Neoplásica de la Expresión Génica , Quinasas Quinasa Quinasa PAM/metabolismo , Proteínas de Unión a la Región de Fijación a la Matriz/genética , FN-kappa B/metabolismo , Proteínas Asociadas a Matriz Nuclear/genética , Receptores de Estrógenos/genética , Transducción de Señal , Animales , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Modelos Biológicos , Metástasis de la Neoplasia , Estadificación de Neoplasias , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Proteínas Asociadas a Matriz Nuclear/metabolismo , Pronóstico , Unión Proteica , Receptores de Estrógenos/metabolismo , Transcripción Genética
7.
Oncotarget ; 7(3): 2878-88, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26701208

RESUMEN

The Groucho transcriptional co-repressor TLE4 protein has been shown to be a tumor suppressor in a subset of acute myeloid leukemia. However, little is known about its role in development and progression of solid tumor. In this study, we found that the expression of TLE4 in colorectal cancer (CRC) tissues was significantly higher than that in their matched adjacent intestine epithelial tissues. In addition, high expression of TLE4 was significantly correlated with advanced Dukes stage, lymph node metastasis and poor prognosis of CRC. Moreover, enforced expression of TLE4 in CRC cell lines significantly enhanced proliferation, invasion and tumor growth. On the contrary, knock down of TLE4 repressed cell proliferation, invasion and tumor growth. Furthermore, our study exhibited that the TLE4 promoted cell proliferation and invasion partially via activation of JNK-c-Jun pathway and subsequently increased cyclinD1 and decreased P27Kip1 expression. In conclusion, these results suggested that TLE4, a potential prognostic biomarker for CRC, plays an important role in the development and progression of human CRC.


Asunto(s)
Neoplasias Colorrectales/patología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Biomarcadores de Tumor/metabolismo , Células CACO-2 , Línea Celular Tumoral , Proliferación Celular , Ciclina D1/biosíntesis , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/biosíntesis , Progresión de la Enfermedad , Activación Enzimática , Células HCT116 , Células HT29 , Humanos , Metástasis Linfática/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica/patología , Trasplante de Neoplasias , Proteínas Nucleares/genética , Pronóstico , Interferencia de ARN , ARN Interferente Pequeño/genética , Proteínas Represoras/genética , Trasplante Heterólogo
8.
Cancer Lett ; 360(1): 68-75, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25667121

RESUMEN

The Leucine zipper tumor suppressor gene 1 (LZTS1/FEZ1) gene was originally identified as a potential tumor suppressor. However, the expression pattern and the role of LZTS1 in the progression of colorectal cancer (CRC) have not been well characterized. Herein, we reported that LZTS1 was markedly reduced in CRC tissues compared with matched adjacent normal intestine epithelial tissues. In analysis of 160 CRC specimens, we revealed that decreased expression of LZTS1 was correlated to aggressive characteristics and poor survival of patients with CRC. Moreover, we found that expression of LZTS1 in CRC cells significantly inhibited cell proliferation in vitro and prohibited tumor growth in vitro. On the contrary, silence of LZTS1 promoted cell proliferation and tumor growth in CRC cells. Furthermore, we demonstrated that LZTS1 inhibited cell proliferation and tumor growth in CRC in part via suppression of AMT-mTOR, subsequently down-regulating p27Kip and up-regulating cyclin D1. These findings suggest that LZTS1 plays a potential tumor suppressor role in CRC progression and represents a valuable clinical prognostic marker of this disease.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Proliferación Celular , Neoplasias Colorrectales/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Adulto , Anciano , Animales , Biomarcadores de Tumor/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , Proteínas de Unión al ADN/genética , Femenino , Células HCT116 , Células HT29 , Humanos , Estimación de Kaplan-Meier , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Pronóstico , Interferencia de ARN , Factores de Tiempo , Transfección , Carga Tumoral , Proteínas Supresoras de Tumor/genética
9.
Sci Total Environ ; 470-471: 1526-36, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24001685

RESUMEN

The objective was to quantitatively understand the impacts of climate change (CC) under the A1B scenario on the contamination levels of 11 polycyclic aromatic hydrocarbons (PAHs) from pyrogenic sources in the environmental media based on model prediction. To predict the impacts of CC in South Korea, a revised version of KoEFT-PBTs, a dynamic multimedia model for persistent organic pollutants in South Korea, was used. Simulations were conducted for the period from 2000 to 2049 under the A1B scenario with the emission data for 2009 and the results for Seoul and Kangwon were compared to those under no climate change (NCC) scenario. Due to CC, the average of annual or monthly average concentration changes within a factor of two for the PAHs in air, soil and water. Time dependent comparison indicates that the maximum increase induced by CC in the monthly average concentration ranges from 10 to 10(2) in air and water. Change in advective flux due to wind speed difference between A1B and NCC dictates the change of the atmospheric PAHs levels while wet particle deposition due to rain rate difference contributes to some extent to the change of 5 and 6 ring PAHs. Whether the concentration change is positive or not depends primarily on the emission strength of internal sources relative to those in surrounding areas. The CC induced changes in atmospheric depositions and degradation rate in soil play a leading role in the change of soil concentration. In water, runoff and degradation are the key processes to the CC induced concentration change. Both in soil and water, the relative importance of individual key processes varies with PAHs. The difference between the two scenarios in wind speed and in rain rate shows stronger correlations with the concentration change than the temperature change.


Asunto(s)
Cambio Climático , Monitoreo del Ambiente/métodos , Contaminantes Ambientales/análisis , Modelos Químicos , Hidrocarburos Policíclicos Aromáticos/análisis , Lluvia , República de Corea , Estaciones del Año , Suelo , Viento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...