Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
MedComm (2020) ; 5(7): e611, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38938284

RESUMEN

Targeting the programmed cell death 1/programmed cell death ligand 1 (PD-1/PD-L1) pathway has been identified as a successful approach for tumor immunotherapy. Here, we identified that the small molecule 5,7,4'-trimethoxyflavone (TF) from Kaempferia parviflora Wall reduces PD-L1 expression in colorectal cancer cells and enhances the killing of tumor cells by T cells. Mechanistically, TF targets and stabilizes the ubiquitin ligase HMG-CoA reductase degradation protein 1 (HRD1), thereby increasing the ubiquitination of PD-L1 and promoting its degradation through the proteasome pathway. In mouse MC38 xenograft tumors, TF can activate tumor-infiltrating T-cell immunity and reduce the immunosuppressive infiltration of myeloid-derived suppressor cells and regulatory T cells, thus exerting antitumor effects. Moreover, TF synergistically exerts antitumor immunity with CTLA-4 antibody. This study provides new insights into the antitumor mechanism of TF and suggests that it may be a promising small molecule immune checkpoint modulator for cancer therapy.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38826132

RESUMEN

Despite the tremendous progress in cancer research over the past few decades, effective therapeutic strategies are still urgently needed. Accumulating evidence suggests that immune checkpoints are the cause of tumor immune escape. PD-1/PD-L1 are among them. Posttranslational modification is the most critical step for protein function, and the regulation of PD-L1 by small molecules through posttranslational modification is highly valuable. In this review, we discuss the mechanisms of tumor cell immune escape and several posttranslational modifications associated with PD-L1 and describe examples in which small molecules can regulate PD-L1 through posttranslational modifications. Herein, we propose that the use of small molecule compounds that act by inhibiting PD-L1 through posttranslational modifications is a promising therapeutic approach with the potential to improve clinical outcomes for cancer patients.

3.
Cell Rep Med ; 5(2): 101357, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38237597

RESUMEN

Programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) blockade has become a mainstay of cancer immunotherapy. Targeting the PD-1/PD-L1 axis with small molecules is an attractive approach to enhance antitumor immunity. Here, we identified a natural marine product, benzosceptrin C (BC), that enhances the cytotoxicity of T cells to cancer cells by reducing the abundance of PD-L1. Furthermore, BC exerts its antitumor effect in mice bearing MC38 tumors by activating tumor-infiltrating T cell immunity. Mechanistic studies suggest that BC can prevent palmitoylation of PD-L1 by inhibiting DHHC3 enzymatic activity. Subsequently, PD-L1 is transferred from the membrane to the cytoplasm and cannot return to the membrane via recycling endosomes, triggering lysosome-mediated degradation of PD-L1. Moreover, the combination of BC and anti-CTLA4 effectively enhances antitumor T cell immunity. Our findings reveal a previously unrecognized antitumor mechanism of BC and represent an alternative immune checkpoint blockade (ICB) therapeutic strategy to enhance the efficacy of cancer immunotherapy.


Asunto(s)
Antígeno B7-H1 , Imidazoles , Neoplasias , Pirroles , Animales , Ratones , Receptor de Muerte Celular Programada 1 , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Lisosomas/metabolismo
4.
Acta Biochim Biophys Sin (Shanghai) ; 55(9): 1337-1347, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37408372

RESUMEN

Ferroptosis, an iron-dependent form of regulated cell death, results in lipid peroxidation of polyunsaturated fatty acids in the cell membrane, which is catalyzed by iron ions and accumulated to lethal levels. It is mechanistically distinct from other forms of cell death, such as apoptosis, pyroptosis, and necroptosis, so it may address the problem of cancer resistance to apoptosis and provide new therapeutic strategies for cancer treatment, which has been intensively studied over the past few years. Notably, considerable advances have been made in the antitumor research of natural products due to their multitargets and few side effects. According to research, natural products can also induce ferroptosis in cancer therapies. In this review we summarize the molecular mechanisms of ferroptosis, introduce the key regulatory genes of ferroptosis, and discuss the progress of natural product research in the field of ferroptosis to provide theoretical guidance for research on natural product-induced ferroptosis in tumors.


Asunto(s)
Productos Biológicos , Ferroptosis , Apoptosis , Muerte Celular , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Hierro , Peroxidación de Lípido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...