Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 13: 1017122, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36561458

RESUMEN

The traditional Chinese medicine plant Fallopia multiflora (Thunb.) Harald. contains various pharmacodynamically active glycosides, such as stilbene glycosides, anthraquinone (AQ) glycosides, and flavonoid glycosides. Glycosylation is an important reaction in plant metabolism that is generally completed by glycosyltransferase in the last step of the secondary metabolite biosynthesis pathway, and it can improve the beneficial properties of many natural products. In this study, based on the transcriptome data of F. multiflora, we cloned two Uridine-diphosphate-dependent glycosyltransferases (UGTs) from the cDNA of F. multiflora (FmUGT1 and FmUGT2). Their full-length sequences were 1602 and 1449 bp, encoding 533 and 482 amino acids, respectively. In vitro enzymatic reaction results showed that FmUGT1 and FmUGT2 were promiscuous and could catalyze the glycosylation of 12 compounds, including stilbenes, anthraquinones, flavonoids, phloretin, and curcumin, and we also obtained and structurally identified 13 glycosylated products from both of them. Further experiments on the in vivo function of FmUGT1 and FmUGT2 showed that 2, 3, 5, 4'- tetrahydroxy stilbene-2-O-ß-d-glucoside (THSG) content in hairy roots was elevated significantly when FmUGT1 and FmUGT2 were overexpressed and decreased accordingly in the RNA interference (RNAi) groups. These results indicate that FmUGT1 and FmUGT2 were able to glycosylate a total of 12 structurally diverse types of acceptors and to generate O-glycosides. In addition, FmUGT1 and FmUGT2 efficiently catalyzed the biosynthesis of THSG, and promoted the production of AQs in transgenic hairy roots.

2.
Physiol Mol Biol Plants ; 28(2): 517-531, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35400879

RESUMEN

Huanglongbing (HLB) is a highly destructive disease that decreases the yield and quality of Citrus medica L. var. sarcodactylis Swingle (C. medica var. sarcodactylis) and poses a great threat to the development of the global citrus industry. To explore the influence of HLB infection on C. medica var. sarcodactylis, levels of photosynthetic pigments, malondialdehyde (MDA), and carbohydrates, as well as antioxidant enzyme activities, were measured. The results show that HLB infection decreased photosynthetic pigment content, increased MDA content and antioxidant enzyme activities, and caused various changes in carbohydrate levels in stem, fruit, and leaf tissues. Transcriptomic analysis of C. medica var. sarcodactylis was also used to identify key genes related to the carbohydrate metabolic synthesis pathway in C. medica var. sarcodactylis. The C. medica var. sarcodactylis ADP-glucose pyrophosphorylase1 (CmAGP1), CmAGP2, C. medica var. sarcodactylis Granule-bound starch synthase (CmGBSS), C. medica var. sarcodactylis Sucrose synthases1 (CmSUS1), CmSUS2, C. medica var. sarcodactylis Sucrose phosphate synthase (CmSPS), C. medica var. sarcodactylis alkaline/neutral invertase1 (CmNi1), CmNi2, CmNi3 and CmNi4 were successfully cloned and identified, and differential expression analysis showed that HLB infection significantly upregulated these genes in stems and leaves. In conclusion, HLB infection causes cellular damage, a reduction in photosynthetic capacity, decreased pathogen resistance, and severe disorders in carbohydrate metabolism in C. medica var. sarcodactylis. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01129-z.

3.
Zhongguo Zhong Yao Za Zhi ; 46(20): 5247-5252, 2021 Oct.
Artículo en Chino | MEDLINE | ID: mdl-34738426

RESUMEN

In this study, the rhizobacteria and actinomycetes of Polygonum multiflorum were screened for the strains with indole acetic acid(IAA)-producing capacity by Salkowski method, the siderophore-producing strains by Chrome Azurol S(CAS) assay, and the strains with inorganic phosphorus-solubilizing capacity by PKO inorganic phosphorus medium. The strains were identified by morphological identification, physiological and biochemical characteristics, and 16 S rDNA sequences. Furthermore, the effect of growth-promoting strains on the seed germination and development of P. multiflorum was tested. The results showed that among 196 strains, two strains F17 and F42 were found to be capable of producing IAA and siderophore and solubilizing inorganic phosphorus simulta-neously. For F17 and F42, the results are listed below: 38.65 and 33.64 mg·L~(-1) for IAA production, 0.85 and 0.49 for siderophore-producing capacities(A_s/A_r), and 1.35 and 1.70 for inorganic phosphorus-solubilizing capacities(D/d), respectively. Comprehensive analysis revealed that strains F17 and F42 were identified as Pseudochrobactrum asacharolyticum and Bacillus aryabhattai, respectively, and both could significantly promote the seed germination of P. multiflorum.


Asunto(s)
Fallopia multiflora , Germinación , Bacillus , Semillas , Microbiología del Suelo
4.
Zhongguo Zhong Yao Za Zhi ; 46(1): 80-85, 2021 Jan.
Artículo en Chino | MEDLINE | ID: mdl-33645055

RESUMEN

To select suitable references gene of Polygonum multiflorum for gene expression analysis in different tissues, five candidate reference genes like Actin,GAPDH,SAND,PP2A,TIP41 were selected from the transcriptome data of P. multiflorum, then the specific primers were designed. The expression stability of the five reference genes in different tissues of P. multiflorum was analyzed by Real-time quantitative PCR through avilable analysis methods such as geNorm, NormFinder, BestKeeper, Delta CT and RefFinder, to ensure the reliability of the analysis results. The results showed that there were significant differences in the expression levels and stability of candidate genes in different tissues of P. multiflorum. Ct distribution analysis of the expression levels of candidate genes showed that the expression levels of Actin and GAPDH genes were relatively high in different tissues, while the expression levels of SAND, PP2A and TIP41 were lower. The stability of each candidate gene was analyzed by different methods. The results of geNorm analysis showed that the expression of PP2A and GAPDH was the most stable, the expression stability of SAND was the worst, the stability of PP2A was the highest in both NormFinder and Delta CT, the stability of SAND was the lowest, and the stability of Actin was the most stable in BestKeeper analysis. Through the comprehensive evaluation and analysis of the stability of candidate genes by RefFinder, it is concluded that the stability of PP2A gene is the highest, followed by GAPDH, Actin, TIP41, SAND, and SAND gene is the worst. Therefore, the PP2A gene is an ideal reference gene for the analysis of gene expression in different tissues of P. multiflorum.


Asunto(s)
Fallopia multiflora , Genes de Plantas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Estándares de Referencia , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...