Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 346: 123635, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38428794

RESUMEN

Pharmaceutical wastewater is recognized for its heightened concentrations of organic pollutants, and biological treatment stands out as an effective technology to remove these organic pollution. Therefore, a comprehensive exploration of core bacterial community compositions, functions, and their responses to environmental factors in pharmaceutical wastewater treatment plants (PWWTPs) is important for understanding the removal mechanism of these organic pollutants. This study comprehensively investigated 36 activated sludge (AS) samples from 15 PWWTPs in China. The results revealed that Proteobacteria (45.41%) was the dominant phylum in AS samples, followed by Bacteroidetes (19.54%) and Chloroflexi (4.13%). While the dominant genera were similar in both aerobic and anaerobic treatment processes, their relative abundances exhibited significant variations. Genera like HA73, Kosmotoga, and Desulfovibrio were more abundant during anaerobic treatment, while Rhodoplanes, Bdellovibrio, and Hyphomicrobium dominated during aerobic treatment. 13 and 10 core operational taxonomic units (OTUs) were identified in aerobic and anaerobic sludge, respectively. Further analysis revealed that core OTUs belonging to genera Kosmotoga, Desulfovibrio, Thauera, Hyphomicrobium, and Chelativorans, were associated with key functions, including sulfur metabolism, methane metabolism, amino acid metabolism, carbohydrate metabolism, toluene degradation, and nitrogen metabolism. Furthermore, this study highlighted the crucial roles of environmental factors, such as COD, NH4+-N, SO42-, and TP, in shaping both the structure and core functions of bacterial communities within AS of PWWTPs. Notably, these factors indirectly affect functional attributes by modulating the bacterial community composition and structure in pharmaceutical wastewater. These findings provide valuable insights for optimizing the efficiency of biochemical treatment processes in PWWTPs.


Asunto(s)
Contaminantes Ambientales , Purificación del Agua , Aguas del Alcantarillado/química , Aguas Residuales , Eliminación de Residuos Líquidos/métodos , Bacterias/metabolismo , Contaminantes Ambientales/metabolismo , Preparaciones Farmacéuticas/metabolismo , Reactores Biológicos/microbiología
2.
Bioresour Technol ; 387: 129612, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37541550

RESUMEN

Two mature anaerobic ammonium oxidation (anammox) consortia with high/low relative abundance of anammox bacteria were inoculated for the rapid sludge proliferation and biofilm formation in this study, named up-flow anaerobic sludge blanket reactor (UASB1) (high) and UASB2 (low), respectively. Results showed that the nitrogen removal efficiency of UASB2 reached 90.94% after the 120-day operation, which was 13% higher than that of UASB1. Moreover, its biomass amounts were 22.18% (biofilm) and 40.96% (flocs) higher than that of UASB1, respectively. Ca. Kuenenia possessed relative abundances of 29.32% (flocs), 27.42% (biofilm) and 31.56% (flocs), 35.20% (biofilm) in the UASB1 and UASB2, respectively. The relative abundances of genes involved in anammox transformation (hzs, nir) and carbon metabolism (fdh, lgA/B/C, acs) were higher in the UASB2, indicating that Ca. Kuenenia might produce acetate and glycogen to enhance microbial interactions. These findings emphasized the importance of microbial interactions in anammox sludge proliferation and biofilm formation.


Asunto(s)
Compuestos de Amonio , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Anaerobiosis , Oxidación-Reducción , Reactores Biológicos/microbiología , Compuestos de Amonio/metabolismo , Interacciones Microbianas , Biopelículas , Nitrógeno , Proliferación Celular , Desnitrificación
3.
J Hazard Mater ; 459: 132152, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37544179

RESUMEN

In this study, we investigated the effects of different natural organic acids (NOAs), L-ascorbic acid (AA) and (+)-catechin hydrate (CAT), on the activation of persulfate (PDS) for the oxidation of naproxen (NAP) in water and soil. We found that only AA-activated PDS process had a significant degradation efficiency of NAP in water. High AA concentration (500 µM) inhibited the degradation of NAP, whereas high levels of PDS (7.5 mM) and acidic conditions (pH=3-7) were beneficial for NAP degradation. In soil, both CAT and AA promoted PDS activation and NAP degradation. Low soil organic matter and high Fe/Mn-mineral contents were favorable for NAP degradation by AA-activated PDS. Column experiments confirmed that NAP was readily transported and degraded under porous medium conditions using AA-activated PDS. Moreover, we revealed that SO4•- and HO• were the dominant reactive species for NAP degradation by AA-activated PDS. Intermediate products of NAP in the AA-activated PDS process were analyzed and the reactive sites of NAP were predicted. E. coli growth tests verified that the intermediate products in the AA-activated PDS process were less toxic than NAP. Our results highlight the high potential of NOAs-activated PDS process for the remediation of NAP-contaminated water and soil.


Asunto(s)
Catequina , Contaminantes Químicos del Agua , Naproxeno/toxicidad , Agua , Suelo/química , Ácido Ascórbico , Escherichia coli , Oxidación-Reducción , Contaminantes Químicos del Agua/química
4.
Bioresour Technol ; 384: 129318, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37315624

RESUMEN

N,N-dimethylformamide is a toxic chemical solvent, which widely exists in industrial wastewater. Nevertheless, the relevant methods merely achieved non-hazardous treatment of N,N-dimethylformamide. In this study, one efficient N,N-dimethylformamide degrading strain was isolated and developed for pollutant removal coupling with poly(3-hydroxybutyrate) (PHB) accumulation. The functional host was characterized as Paracoccus sp. PXZ, which could consume N,N-dimethylformamide as the nutrient substrate for cell reproduction. Whole-genome sequencing analysis confirmed that PXZ simultaneously possesses the essential genes for poly(3-hydroxybutyrate) synthesis. Subsequently, the approaches of nutrient supplementation and various physicochemical variables to strengthen poly(3-hydroxybutyrate) production were investigated. The optimal biopolymer concentration was 2.74 g·L-1 with a poly(3-hydroxybutyrate) proportion of 61%, showing a yield of 0.29 g-PHB·g-1-fructose. Furthermore, N,N-dimethylformamide served as the special nitrogen matter that could realize a similar poly(3-hydroxybutyrate) accumulation. This study provided a fermentation technology coupling with N,N-dimethylformamide degradation, offering a new strategy for resource utilization of specific pollutants and wastewater treatment.


Asunto(s)
Contaminantes Ambientales , Paracoccus , Ácido 3-Hidroxibutírico/metabolismo , Dimetilformamida/metabolismo , Paracoccus/metabolismo , Contaminantes Ambientales/metabolismo , Poliésteres/metabolismo , Hidroxibutiratos/metabolismo
5.
Bioresour Technol ; 371: 128645, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36681349

RESUMEN

The lack of anammox seeds is regarded as the bottleneck of anammox-based processes. Although the interactions in anammox consortia have attracted increasing attention, little is known about the influence of inoculated sludge populations on the growth of anammox bacteria. In this study, four sludge of distinct communities mixed with anammox sludge (the relative abundance of Ca. Kuenenia was 1.96 %) were used as the seeds, respectively for the start-up of anammox processes. Notably, all these mixed microbial communities tend to form a similar microbial community, defined as the anammox core, containing anammox-bacteria (22.9 ± 5.9 %), ammonia-oxidizing-bacteria (0.8 ± 0.7 %), nitrite-oxidizing-bacteria (0.2 ± 0.2 %), Chloroflexi-bacteria (0.7 ± 0.4 %), and heterotrophic-denitrification-bacteria (0.3 ± 0.2 %). It also elucidated that the communities of Nitrosomonas-dominated sludge were the closest to the anammox core, and achieved the highest nitrogen-removal rate of 0.73 kg-N m-3 d-1. This study sheds light on the solution to the shortage of anammox seeds in the full-scale wastewater treatment application.


Asunto(s)
Microbiota , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Aguas Residuales , Oxidación Anaeróbica del Amoníaco , Reactores Biológicos/microbiología , Oxidación-Reducción , Bacterias , Nitrógeno , Desnitrificación
6.
Environ Sci Pollut Res Int ; 30(4): 10969-10981, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36088441

RESUMEN

We report on the preparation of Co/N-NPCx/y with porous structure and excellent activation properties. The synthesis involves the preparation of Zn/Co-ZIFx and the carbonization of Zn/Co-ZIFx at a high temperature in an inert atmosphere. The volatilization of zinc during carbonization results in a porous structure, which is beneficial to the migration of pollutants. The sizes, specific surface areas, and pore size distribution of Co/N-NPCx/y can be achieved by tuning Zn/Co ratio. The calcination temperatures mainly affect the crystalline phase, crystallinity, and magnetic properties of the as-prepared materials. The effects of the as-prepared materials properties and activation conditions on the Rhodamine B (RhB) degradation by PMS activation were investigated. Overall, it exhibited superior catalytic activity in PMS activation, as evidenced by almost complete removal of RhB (0.020 mM, 100 mL) by using 5 mg/L Co/N-NPC0.5/900 and 1.250 mM PMS within 30 min. Furthermore, it confirmed the participation of SO4•-, •OH, and 1O2 in the catalytic reaction, and both SO4•- and 1O2 were the main reactive oxygen species that play a major role.


Asunto(s)
Carbono , Contaminantes Químicos del Agua , Carbono/química , Porosidad , Contaminantes Químicos del Agua/análisis , Peróxidos/química
7.
Int J Biol Macromol ; 226: 1523-1532, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36455823

RESUMEN

Open poly(3-hydroxybutyrate) (PHB) fermentation is of great potential, and batch PHB synthesis with piperazine as the nitrogen switch has been realized. However, it is vital to explore the feasibility of continuous PHB fermentation with piperazine-contained wastewater remediation collaboratively. Here, an aerobic membrane bioreactor was constructed for consecutive PHB synthesis. The removal efficiency of piperazine decreased from 100 % to 82.6 % after three cycles, meanwhile, the PHB concentration was 0.39 g·L-1, 0.18 g·L-1, and undetected for each cycle. Microbial community analysis showed that Proteobacteria, Actinobacteriota, and Bacteroidota were the main contaminating microbes. Furthermore, three metagenome-assembled genomes related to Flavobacterium collumnare, Herbaspirillum aquaticum, and Microbacterium enclense were identified as the dominant contaminating strains. These microbes obtained nitrogenous substrates transformed by Paracoccus sp. TOH, such as amino acids and dissolved organic matter, as nutrient for accumulation. This study verified the practicability of coupling continuous PHB synthesis with industrial wastewater treatment and revealed the derivation mechanism of contaminating species, which could provide a reference for the targeted nitrogen release gene knockout of functional PHB fermentation chassis.


Asunto(s)
Hidroxibutiratos , Aguas Residuales , Ácido 3-Hidroxibutírico , Fermentación , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Nitrógeno/metabolismo , Piperazinas
8.
J Environ Manage ; 324: 116262, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36183528

RESUMEN

The engineering applications of mainstream anaerobic ammonium oxidation (anammox) have raised increasing attention due to its energy-efficient, however, the organics-mediated microbial dynamics and mixotrophic metabolisms in anammox consortia under micro-aerobic conditions are still elusive. Here, the response of the anammox process to sodium acetate and glucose at a C/N ratio ranging from 0 to 0.5 was investigated under micro-aerobic conditions, respectively. Results showed that the additional glucose could promote the nitrogen removal efficiency (NRE) and nitrogen removal rate (NRR) of anammox processes at a low C/N ratio (0.3), representing 84.00% and 0.53 N kg·m-3·d-1. The introduced organics could regulate the diversity of the microbial community and simplify the microbial relationship in anammox consortia. Anammox could not benefit from the introduced sodium acetate, while glucose could effectively enhance the anammox activity and microbial interactions in anammox consortia. Glucose might also stimulate the mixotrophic mechanism of Ca. Kuenenia, further promotes the proliferation of anammox sludge under micro-aerobic conditions. This study reveals that glucose could positively mediate microbial interactions and mixotrophic metabolism in anammox consortia under micro-aerobic conditions, which raises a new horizon for the proliferation of anammox sludge for mainstream engineering applications.


Asunto(s)
Compuestos de Amonio , Aguas del Alcantarillado , Compuestos de Amonio/metabolismo , Reactores Biológicos , Acetato de Sodio , Oxidación-Reducción , Nitrógeno/metabolismo , Anaerobiosis , Glucosa , Desnitrificación
9.
Bioresour Technol ; 363: 127939, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36100183

RESUMEN

The expensive carbon matrix is a bottleneck restricting the industrialization of polyhydroxyalkanoates (PHAs). Volatile fatty acids (VFAs) derived from waste activated sludge via anaerobic fermentation might be alternative carbon matters for PHAs synthesis. In this study, the effect of enzymes on VFAs yields and the feasibility of the produced VFAs for PHAs fermentation by Paracoccus sp. TOH were investigated. The optimum cumulative VFAs concentration reached 4076.6 mg-COD·L-1 in the lysozyme treatment system. Correspondingly, the highest poly(3-hydroxybuturate-co-3-hydroxyvalerate) (PHBV) concentration (119.1 mg·L-1) containing 20.3 mol% 3-hydroxyvalerate was obtained. It proved that Paracoccus sp. TOH possesses the capability for PHBV accumulation. The functional hydrolytic-acidogenic microorganisms, such as Clostridium sensu stricto and Bacteroides sp. were accumulated. The functional genes encoding hydrolysis, carbohydrates metabolism, VFAs generation were enriched. This study offered a possible strategy for VFAs production and verified the feasibility of sludge hydrolysate as a high-quality carbon substrate for PHAs fermentation.


Asunto(s)
Paracoccus , Polihidroxialcanoatos , Carbohidratos/química , Carbono , Ácidos Grasos Volátiles/metabolismo , Fermentación , Concentración de Iones de Hidrógeno , Muramidasa/metabolismo , Paracoccus/metabolismo , Ácidos Pentanoicos , Polihidroxialcanoatos/metabolismo , Aguas del Alcantarillado/química
10.
Environ Res ; 215(Pt 1): 114318, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36116498

RESUMEN

The feasibility of anammox-based processes for nitrogen-contained wastewater treatment has been verified with different anammox bacteria, however, the ecological niche of anammox bacteria under mainstream conditions is still elusive. In this study, six sludge samples collected from different habitats were utilized to culture anammox bacteria under mainstream conditions, and two distinct anammox genera (Ca. Kuenenia and Ca. Brocadia) with a relative abundance of 6.31% (C1) and 3.09% (C3), respectively, were identified. Notably, the microbial dynamics revealed that anammox bacteria (AMX), ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB), Chloroflexi bacteria (CFX), and heterotrophic denitrification bacteria (HDB) were the core members in anammox consortia. However, Ca. Kuenenia and Ca. Brocadia occupied different ecological niches in anammox consortia. The dissolved oxygen and microbial structures of the anammox-continuous stirred tank reactor systems were the main factors to affect their niche differentiation. Meanwhile, comammox might exist in the systems and occupy the ecological niche of AOB in nitrogen cycling. The network analysis suggested that Ignavibacterium could be the associated bacteria in Ca. Kuenenia-dominated consortia, while Ca. Nitrotoga was that in the Ca. Brocadia-dominated consortia. Our findings reveal a valuable reference for the observation of distinct anammox genera under mainstream conditions, which provides theoretical guidance for the engineering application of mainstream anammox-based processes.


Asunto(s)
Compuestos de Amonio , Betaproteobacteria , Amoníaco , Oxidación Anaeróbica del Amoníaco , Bacterias , Reactores Biológicos/microbiología , Ecosistema , Nitritos , Nitrógeno , Oxidación-Reducción , Oxígeno , Aguas del Alcantarillado , Aguas Residuales
11.
Bioresour Technol ; 362: 127857, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36037841

RESUMEN

In this study, the microbial diversity of size-fractionated anammox sludge in a well-mixed system and their contribution to nitrogen transformation were investigated. Results showed that small granules (0.2-1.0 mm) contributed to the major part of the nitrogen removal rate (56 %) due to its largest mixed liquor volatile suspended solids (1240 ± 80 mg·L-1). However, large granules (>1.0 mm) possessed the highest relative abundances of Ca. Kuenenia stuttgartiensis and specific anammox activity, representing 49.34 % and 24.45 ± 0.01 mg-N·g-1-mixed liquor volatile suspended solids·h-1, respectively. The microbial diversity decreased as the increase of granular size, resulting in microbial community shifting to a simpler model. Metagenomic analysis showed that fine sludge might be the potential major for NO/N2O production in the mature well-mixed system under inorganic conditions. This study provides guidance for the evaluation of nitrogen contribution by anammox size-fractionated sludge and the inhibition of the potential NO/N2O emission in anammox processes.


Asunto(s)
Microbiota , Aguas del Alcantarillado , Oxidación Anaeróbica del Amoníaco , Anaerobiosis , Reactores Biológicos , Desnitrificación , Nitrógeno , Oxidación-Reducción
12.
Int J Biol Macromol ; 209(Pt A): 1457-1464, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35461873

RESUMEN

Poly(3-hydroxybutyrate) (PHB), as a kind of bioplastics for sustainable development, can be synthesized by various microorganisms, however, the high cost of its microbial fermentation is a challenge for its large-scale application. In this study, piperazine degrading strain, Paracoccus sp. TOH, was developed as an excellent chassis for open PHB fermentation with piperazine as controlling element. Whole-genome analysis showed that TOH possesses multi-substrate metabolic pathways to synthesize PHB. Next, TOH could achieve a maximum PHB concentration of 2.42 g L-1, representing a yield of 0.36 g-PHB g-1-glycerol when C/N ratio was set as 60:1 with 10 g L-1 glycerol as substrate. Furthermore, TOH could even synthesize 0.39 g-PHB g-1-glycerol under non-sterile conditions when piperazine was fed with a suitable rate of 1 mg L-1 h-1. 16S rRNA gene sequencing analysis showed that microbial contamination could be effectively inhibited through the regulation of piperazine under non-sterile conditions and TOH dominated the microbial community with a relative abundance of 72.3% at the end of the operational period. This study offers an inspired open PHB fermentation system with piperazine as the control switch, which will realize the goal of efficient industrial biotechnology as well as industrial wastewater treatment.


Asunto(s)
Glicerol , Nitrógeno , Ácido 3-Hidroxibutírico , Fermentación , Glicerol/metabolismo , Hidroxibutiratos/metabolismo , Nitrógeno/metabolismo , Piperazina , Poliésteres/metabolismo , ARN Ribosómico 16S/metabolismo
13.
J Hazard Mater ; 424(Pt B): 127435, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34638070

RESUMEN

Combined pollution caused by organic pollutants and heavy metals pose a significant challenge to the adsorption process. In this study, iron-modified biochar (Fe-BC) was prepared by using ferrate (K2FeO4) and wheat stalk as the precursors for the adsorption of copper (Cu2+) and sulfadiazine (SDZ), especially under combined pollution scenarios. Iron modification not only enlarged the surface area but also loaded iron oxide nanoparticles on biochar surface. Accordingly, Fe-BC exhibited better adsorption capability of Cu2+ and SDZ than the pristine biochar (BC). The corresponding maximum adsorption capacities of Fe-BC700 were 46.85 mg g-1 and 45.43 mg g-1 towards Cu2+ and SDZ, respectively. Interestingly, the adsorption was elevated in binary-pollutants system, suggesting a synergistic effect, which was probably attributed to the mutual bridging effects and complexation between Cu2+ and SDZ. The loaded iron oxide particles could serve as a physical barrier to separate the adsorptions of Cu2+ and SDZ and thus inhibited the competitive adsorption. Meanwhile, theoretical calculation demonstrated that sulfonamide group was the most probable binding site. Columns packed with Fe-BC700 showed better performances for Cu2+ and SDZ removal in binary system (635.73 BV for Cu2+ and 4846.26 BV for SDZ) than in single systems (571.60 BV for Cu2+ and 3572.06 BV for SDZ), which was consistent with batch adsorption experiments. These results demonstrated the potential application of Fe-BC700 for simultaneous adsorption of Cu2+ and SDZ and provided a cost-effective way for the remediation of organic and inorganic pollutants.


Asunto(s)
Sulfadiazina , Contaminantes Químicos del Agua , Adsorción , Carbón Orgánico , Cobre , Compuestos de Hierro , Compuestos de Potasio , Contaminantes Químicos del Agua/análisis
14.
Sci Total Environ ; 762: 143092, 2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33183814

RESUMEN

Contamination of antimicrobial agents such as Triclosan (TCS) in soil and groundwater possess high risk to human health and ecological systems. Present study systematically studied the degradation of TCS in soil and groundwater by Fe2+ activated persulfate (Fe2+/PS) oxidation process and special attention was paid on revealing the influence of remediation process on soil physicochemical and microbial characteristics. Experimental results demonstrated that TCS was readily degraded in soil upon Fe2+/PS oxidation system. Higher Fe2+/PS concentration and lower pH value may promote the TCS degradation. Besides added Fe2+, the naturally present Fe (III)-O and dissolved Fe from iron containing minerals may also activate PS for TCS degradation. SO4•-, HO•, R• and 1O2 were identified to be involved in the reaction system while addition of Fe2+-chelating agents, e.g., oxalic acid and ethylene diamine tetraacetic acid (EDTA) may slightly promote the degradation. Low concentration of Cl- facilitated TCS degradation and high concentration of Cl- slowed down the degradation. The presence of HCO3- may inhibit the degradation. Fe2+/PS oxidation process may partly reduce the soil organic matter content and diversely affect the composition of various C functional groups on soil. It also induced the breakdown of large soil aggregates and reduced the soil porosity, especially at macroporosity region. Phospholipid Fatty Acid test indicated that soil microbial community structure has been altered and the actinomycetes, fungi and Gram-negative bacteria decreased largely. The feasibility of remediation of TCS using Fe2+/PS oxidation in various natural groundwater samples was evaluated. Finally, five degradation intermediates of TCS by Fe2+/PS oxidation in soil were enriched by solid phase extraction and were identified by liquid chromatography-triple quadrupole mass spectrometry for proposing detailed transformation pathways.

15.
ACS Appl Mater Interfaces ; 12(48): 53788-53798, 2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33205958

RESUMEN

Biochar is a promising candidate for the adsorptive removal of organic/inorganic pollutants, yet its role in metal-free catalyzed advanced oxidation processes still remains ambiguous. In this work, five biochar samples (PPBKx, where x represents the pyrolysis temperature) were prepared by using metal-enriched phytoremediation plant residue as the feedstock. Notably, PPBK exhibited a high specific surface area (as high as 1090.7 m2 g-1) and outstanding adsorption capacity toward ciprofloxacin (CIP, as much as 1.51 ± 0.19 mmol g-1). By introducing peroxymonosulfate (PMS, 5 mM) as the chemical oxidant, over 2 mmol g-1 CIP was synergistically adsorbed and oxidized within 30 min although PMS itself could not oxidize CIP efficiently, suggesting the formation of reactive oxidative species. Theoretical calculations revealed that PMS anions preferentially adsorbed on the activated C atoms adjacent to the graphitic N dopant, where the carbon matrix served as the electron donor, instead of as an electron mediator. The adsorbed PMS possessed a smaller molecular orbital energy gap, indicating that it was much easier to be activated than free PMS anions. Surface-bound reactive species were elucidated to be the dominant contributor through chemical quenching experiments and electrochemical characterizations. The catalytic activity of PPBK700 could be greatly retained in repeated oxidations because of the stable N species, which serve as the active catalytic sites, while the CIP adsorption was greatly deteriorated because of the diminishing active adsorption sites (carbon matrix edge) caused by the partial oxidation of PMS. This work not only provides a facile and low-cost approach for the synthesis of functional biochar toward environmental remediation but also deepens the understanding of biochar-catalyzed PMS activation and nonradical oxidation.

16.
J Hazard Mater ; 400: 123201, 2020 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-32947740

RESUMEN

This study examined the feasibility of applying thermal-activated persulfate (PS) oxidation for remediation of soil co-contaminated with s-triazine herbicides including Atrazine (ATZ), Simazine (SIM) and Ametryn (AME). Homogeneous activation using heating method (50 °C) was selected. Results showed that thermal-activated PS oxidation process may successfully degrade ATZ in soil and degradation efficiency was increased along the arising activation temperature. Higher PS dosages and depressed initial pH were beneficial for degradation while increasing initial ATZ concentration may hamper the degradation. The oxidation process may lead to changes of surface functional groups on soil. The presence of Cl-, HCO3- and H2PO4- at both of low and high concentrations may inhibit the degradation of ATZ. Soil depths may apparently influence the ATZ degradation which followed 0-10 < 10-30 < 30-60 cm mainly depending on the soil organic matter (SOM) contents. Thermal-activated PS may effectively degrade ATZ, SIM and AME under co-contaminated condition and the more favorable of ethyl group towards SO4- than isopropyl and methylation groups was detected. Both of SO4- and HO were identified to be responsible for degradation. Finally, degradation intermediates of ATZ, SIM and AME were identified by LC-Q-TOF-MS and detailed transformation pathways for three pesticides were proposed, respectively.

17.
J Hazard Mater ; 371: 566-575, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-30878907

RESUMEN

Abatement of antibiotics from aquatic systems is of great importance but remains a challenge. Herein, we prepared ternary AgBr/Ag3PO4@natural hematite (AgBr/Ag3PO4@NH) heterojunction composite via a simple route for the photocatalytic degradation of antibiotic pollutants. By adjusting the dose of Ag species, four products with different Ag content (denoted as Ag0.5BrPFe, Ag1BrPFe, Ag1.5BrPFe, and Ag2BrPFe) were developed. Among them, Ag1.5BrPFe exhibited the best photocatalytic activity. Four antibiotics (i.e. ciprofloxacin (CIP), norfloxacin (NOR), sulfadiazine (SDZ), and tetracycline (TTC)) could be degraded with synthesized Ag1.5BrPFe in multi-component systems. Water matrix indexes including solution pH, coexisting anions, humic acids exhibited distinct effects on the degradation process. The results revealed that the degradation process was accelerated at acidic conditions while depressed at basic conditions. Superoxide radical and hole were detected by in situ electron spin resonance technique and played the dominant roles. The degradation pathway TTC was tentatively established followed with the identification of the degradation intermediates and computational analysis. This work would shed light on the photocatalytic degradation mechanism of organic pollutants by the AgBr/Ag3PO4@NH composite.


Asunto(s)
Antibacterianos/química , Bromuros/química , Compuestos Férricos/química , Fosfatos/química , Compuestos de Plata/química , Luz Solar , Catálisis , Oxidación-Reducción , Procesos Fotoquímicos
18.
Sci Rep ; 7(1): 6795, 2017 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-28754900

RESUMEN

2-hydroxy-1,4 naphthoquinone (lawsone) is widely used and induces environmental pollutions during its production and application. In the present study, a lawsone-degrading bacterium strain, LH-3 was successfully isolated from the activated sludge. Based on the 16S rRNA gene analysis, the strain LH-3 phylogenetically belonged to the Pseudomonas taiwanensis. It could degrade 200 mg L-1 lawsone completely in 9 h with an inoculum quantity of 1% (v/v). The effects of environmental conditions on the degradation process and the degradation pathway were systematically investigated. LH-3 could maintain its high degradation efficiency under high salt condition. The identified intermediates of salicylic acid, 2-hydroxy-4-oxo-chroman-2-carboxylic acid, and catechol elucidated the potential degradation pathway. Furthermore, the immobilized LH-3 strain cells prepared with alginate gel and biochar performed excellent stability in nine successive degradation runs. It could sucessfully survive in laboratory scale sequencing batch reactor and become to be the dominant species. This study clearly revealed that LH-3 could serve as an attractive candidate for the microbial remediation of lawsone-containing wastewater.


Asunto(s)
Naftoquinonas/metabolismo , Pseudomonas/metabolismo , Biodegradación Ambiental , Catecoles/metabolismo , Cromanos/metabolismo , Microbiología Industrial/métodos , Pseudomonas/aislamiento & purificación , Ácido Salicílico/metabolismo
19.
Appl Environ Microbiol ; 83(10)2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28283519

RESUMEN

Sphingobium phenoxybenzoativorans SC_3 degrades and utilizes diphenyl ether (DE) or 2-carboxy-DE as its sole carbon and energy source. In this study, we report the degradation of DE and 2-carboxy-DE initiated by a novel ring cleavage angular dioxygenase (diphenyl ether dioxygenase [Dpe]) in the strain. Dpe functions at the angular carbon and its adjacent carbon (C-1a, C-2) of a benzene ring in DE (or the 2-carboxybenzene ring in 2-carboxy-DE) and cleaves the C-1a-C-2 bond (decarboxylation occurs simultaneously for 2-carboxy-DE), yielding 2,4-hexadienal phenyl ester, which is subsequently hydrolyzed to muconic acid semialdehyde and phenol. Dpe is a type IV Rieske non-heme iron oxygenase (RHO) and consists of three components: a hetero-oligomer oxygenase, a [2Fe-2S]-type ferredoxin, and a glutathione reductase (GR)-type reductase. Genetic analyses revealed that dpeA1A2 plays an essential role in the degradation and utilization of DE and 2-carboxy-DE in S. phenoxybenzoativorans SC_3. Enzymatic study showed that transformation of 1 molecule of DE needs two molecules of oxygen and two molecules of NADH, supporting the assumption that the cleavage of DE catalyzed by Dpe is a continuous two-step dioxygenation process: DE is dioxygenated at C-1a and C-2 to form a hemiacetal-like intermediate, which is further deoxygenated, resulting in the cleavage of the C-1a-C-2 bond to form one molecule of 2,4-hexadienal phenyl ester and two molecules of H2O. This study extends our knowledge of the mode and mechanism of ring cleavage of aromatic compounds.IMPORTANCE Benzene ring cleavage, catalyzed by dioxygenase, is the key and speed-limiting step in the aerobic degradation of aromatic compounds. As previously reported, in the ring cleavage of DEs, the benzene ring needs to be first dihydroxylated at a lateral position and subsequently dehydrogenated and opened through extradiol cleavage. This process requires three enzymes (two dioxygenases and one dehydrogenase). In this study, we identified a novel angular dioxygenase (Dpe) in S. phenoxybenzoativorans SC_3. Under Dpe-mediated catalysis, the benzene ring of DE is dioxygenated at the angular position (C-1a, C-2), resulting in the cleavage of the C-1a-C-2 bond to generate a novel product, 2,4-hexadienal phenyl ester. This process needs only one angular dioxygenase, Dpe. Thus, the ring cleavage catalyzed by Dpe represents a novel mechanism of benzene ring cleavage.


Asunto(s)
Alphaproteobacteria/metabolismo , Proteínas Bacterianas/metabolismo , Dioxigenasas/metabolismo , Éteres Fenílicos/química , Éteres Fenílicos/metabolismo , Alphaproteobacteria/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biocatálisis , Biodegradación Ambiental , Dioxigenasas/química , Dioxigenasas/genética , Estructura Molecular
20.
J Hazard Mater ; 324(Pt B): 753-761, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-27890359

RESUMEN

The selective removal of radionuclides with extremely low concentrations from environmental medium remains a big challenge. Ammonium molybdophosphate possess considerable selectivity towards cesium ion (Cs+) due to the specific ion exchange between Cs+ and NH4+. Ammonium molybdophosphate - polyacrylonitrile (AMP-PAN) membrane was successfully prepared for the first time in this study. Efficient removal of Cs+ (95.7%, 94.1% and 91.3% of 1mgL-1) from solutions with high ionic strength (400mgL-1 of Na+, Ca2+ or K+) was achieved by AMP-PAN composite. Multilayer chemical adsorption process was testified through kinetic and isotherm studies. The estimated maximum adsorption capacities even reached 138.9±21.3mgg-1. Specifically, the liquid film diffusion was identified as the rate-limiting step throughout the removal process. Finally, AMP-PAN membrane could eliminate Cs+ from water effectively through the filtration adsorption process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...