RESUMEN
Astrocytes, the predominant glial cell type in the mammalian brain, influence a wide variety of brain parameters including neuronal energy metabolism. Exciting recent studies have shown that obesity and diabetes can impact on astrocyte function. We review evidence that dysregulation of astrocytic lipid metabolism and glucose sensing contributes to dysregulation of whole-body energy balance, thermoregulation, and insulin sensitivity. In addition, we consider the overlooked topic of the sex-specific roles of astrocytes and their response to hormonal fluctuations that provide insights into sex differences in metabolic regulation. Finally, we provide an update on potential ways to manipulate astrocyte function, including genetic targeting, optogenetic and chemogenetic techniques, transplantation, and tailored exosome-based therapies, which may lead to improved treatments for metabolic disease.
RESUMEN
Astrocytes are multi-functional glial cells in the central nervous system that play critical roles in modulation of metabolism, extracellular ion and neurotransmitter levels, and synaptic plasticity. Astrocyte-derived signaling molecules mediate many of these modulatory functions of astrocytes, including vesicular release of ATP. In the present study, we used a unique genetic mouse model to investigate the functional significance of astrocytic exocytosis of ATP. Using primary cultured astrocytes, we show that loss of vesicular nucleotide transporter (Vnut), a primary transporter responsible for loading cytosolic ATP into the secretory vesicles, dramatically reduces ATP loading into secretory lysosomes and ATP release, without any change in the molecular machinery of exocytosis or total intracellular ATP content. Deletion of astrocytic Vnut in adult mice leads to increased anxiety, depressive-like behaviors, and decreased motivation for reward, especially in females, without significant impact on food intake, systemic glucose metabolism, cognition, or sociability. These behavioral alterations are associated with significant decreases in the basal extracellular dopamine levels in the nucleus accumbens. Likewise, ex vivo brain slices from these mice show a strong trend toward a reduction in evoked dopamine release in the nucleus accumbens. Mechanistically, the reduced dopamine signaling we observed is likely due to an increased expression of monoamine oxidases. Together, these data demonstrate a key modulatory role of astrocytic exocytosis of ATP in anxiety, depressive-like behavior, and motivation for reward, by regulating the mesolimbic dopamine circuitry.
RESUMEN
Necrotizing fasciitis is an aggressive bacterial infection that causes necrosis of the fascia and subcutaneous tissues with rapid progression and high mortality. Early stages often lead to misdiagnosis, resulting in improper treatment and severe implications. This case study presents a patient with diabetes mellitus combined with hepatitis B who rapidly developed necrotizing fasciitis of the left forearm and left breast after trauma and controlled the infection with early surgical treatment. It is worth noting that early surgical exploration is the gold standard for the diagnosis of necrotizing fasciitis and is the most effective means of reducing mortality and amputation rates in necrotizing fasciitis.
RESUMEN
Nowadays, food safety is still facing great challenges. During storage and transportation, perishable goods have to be kept at a low temperature. However, the current logistics still lack enough preservation ability to maintain a low temperature in the whole. Hence, considering the temperature fluctuation in logistics, in this work, the passive radiative cooling (RC) technology was applied to package to enhance the temperature control capability in food storage and transportation. The RC emitter with selective infrared emission property was fabricated by a facile coating method, and Al2O3 was added to improve the wear resistance. The sunlight reflectance and infrared emittance within atmospheric conditions could reach up to 0.92 and 0.84, respectively. After abrasion, the sunlight reflection only decreased by 0.01, and the infrared emission showed a negligible change, revealing excellent wear resistance. During outdoor measurement, the box assembled by RC emitters (RC box) was proved to achieve temperature drops of â¼9 and â¼4 °C compared with the corrugated box and foam box, respectively. Besides, the fruits stored in the RC box exhibited a lower decay rate. Additionally, after printing with patterns to meet the aesthetic requirements, the RC emitter could also maintain the cooling ability. Given the superior optical properties, wear resistance, and cooling capability, the emitter has great potential for obtaining a better temperature control ability in food storage and transportation.
RESUMEN
Heparan sulfate (HS) is a linear polysaccharide that plays a key role in cellular signaling networks. HS functions are regulated by its 6-O-sulfation, which is catalyzed by three HS 6-O-sulfotransferases (HS6STs). Notably, HS6ST2 is mainly expressed in the brain and HS6ST2 mutations are linked to brain disorders, but the underlying mechanisms remain poorly understood. To determine the role of Hs6st2 in the brain, we carried out a series of molecular and behavioral assessments on Hs6st2 knockout mice. We first carried out strong anion exchange-high performance liquid chromatography and found that knockout of Hs6st2 moderately decreases HS 6-O-sulfation levels in the brain. We then assessed body weights and found that Hs6st2 knockout mice exhibit increased body weight, which is associated with abnormal metabolic pathways. We also performed behavioral tests and found that Hs6st2 knockout mice showed memory deficits, which recapitulate patient clinical symptoms. To determine the molecular mechanisms underlying the memory deficits, we used RNA sequencing to examine transcriptomes in two memory-related brain regions, the hippocampus and cerebral cortex. We found that knockout of Hs6st2 impairs transcriptome in the hippocampus, but only mildly in the cerebral cortex. Furthermore, the transcriptome changes in the hippocampus are enriched in dendrite and synapse pathways. We also found that knockout of Hs6st2 decreases HS levels and impairs dendritic spines in hippocampal CA1 pyramidal neurons. Taken together, our study provides novel molecular and behavioral insights into the role of Hs6st2 in the brain, which facilitates a better understanding of HS6ST2 and HS-linked brain disorders.
Asunto(s)
Encefalopatías , Discapacidad Intelectual , Sulfotransferasas , Animales , Humanos , Ratones , Espinas Dendríticas/metabolismo , Heparitina Sulfato/metabolismo , Hipocampo/metabolismo , Trastornos de la Memoria , Ratones Noqueados , Neuronas/metabolismo , Compuestos de Pralidoxima , Sulfotransferasas/genética , Sulfotransferasas/metabolismoRESUMEN
Oligodendrocytes (OLs) generate lipid-rich myelin membranes that wrap axons to enable efficient transmission of electrical impulses. Using a RIT1 knockout mouse model and in situ high-resolution matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) coupled with MS-based lipidomic analysis to determine the contribution of RIT1 to lipid homeostasis. Here, we report that RIT1 loss is associated with altered lipid levels in the central nervous system (CNS), including myelin-associated lipids within the corpus callosum (CC). Perturbed lipid metabolism was correlated with reduced numbers of OLs, but increased numbers of GFAP+ glia, in the CC, but not in grey matter. This was accompanied by reduced myelin protein expression and axonal conduction deficits. Behavioral analyses revealed significant changes in voluntary locomotor activity and anxiety-like behavior in RIT1KO mice. Together, these data reveal an unexpected role for RIT1 in the regulation of cerebral lipid metabolism, which coincide with altered white matter tract oligodendrocyte levels, reduced axonal conduction velocity, and behavioral abnormalities in the CNS.
RESUMEN
Sensory neurons in the dorsal root ganglia (DRG) convey somatosensory and metabolic cues to the central nervous system and release substances from stimulated terminal endings in peripheral organs. Sex-biased variations driven by the sex chromosome complement (XX and XY) have been implicated in the sensory-islet crosstalk. However, the molecular underpinnings of these male-female differences are not known. Here, we aim to characterize the molecular repertoire and the secretome profile of the lower thoracic spinal sensory neurons and to identify molecules with sex-biased insulin sensing- and/or insulin secretion-modulating activity that are encoded independently of circulating gonadal sex hormones. We used transcriptomics and proteomics to uncover differentially expressed genes and secreted molecules in lower thoracic T5-12 DRG sensory neurons derived from sexually immature 3-week-old male and female C57BL/6J mice. Comparative transcriptome and proteome analyses revealed differential gene expression and protein secretion in DRG neurons in males and females. The transcriptome analysis identified, among others, higher insulin signaling/sensing capabilities in female DRG neurons; secretome screening uncovered several sex-specific candidate molecules with potential regulatory functions in pancreatic ß cells. Together, these data suggest a putative role of sensory interoception of insulin in the DRG-islet crosstalk with implications in sensory feedback loops in the regulation of ß-cell activity in a sex-biased manner. Finally, we provide a valuable resource of molecular and secretory targets that can be leveraged for understanding insulin interoception and insulin secretion and inform the development of novel studies/approaches to fathom the role of the sensory-islet axis in the regulation of energy balance in males and females.
Asunto(s)
Insulina , Transcriptoma , Femenino , Masculino , Ratones , Animales , Ratones Endogámicos C57BL , Secreción de Insulina , Caracteres Sexuales , Secretoma , Células Receptoras SensorialesRESUMEN
Brain insulin signaling controls peripheral energy metabolism and plays a key role in the regulation of mood and cognition. Epidemiological studies have indicated a strong connection between type 2 diabetes (T2D) and neurodegenerative disorders, especially Alzheimer's disease (AD), linked via dysregulation of insulin signaling, i.e., insulin resistance. While most studies have focused on neurons, here, we aim to understand the role of insulin signaling in astrocytes, a glial cell type highly implicated in AD pathology and AD progression. To this end, we created a mouse model by crossing 5xFAD transgenic mice, a well-recognized AD mouse model that expresses five familial AD mutations, with mice carrying a selective, inducible insulin receptor (IR) knockout in astrocytes (iGIRKO). We show that by age 6 mo, iGIRKO/5xFAD mice exhibited greater alterations in nesting, Y-maze performance, and fear response than those of mice with the 5xFAD transgenes alone. This was associated with increased Tau (T231) phosphorylation, increased Aß plaque size, and increased association of astrocytes with plaques in the cerebral cortex as assessed using tissue CLARITY of the brain in the iGIRKO/5xFAD mice. Mechanistically, in vitro knockout of IR in primary astrocytes resulted in loss of insulin signaling, reduced ATP production and glycolic capacity, and impaired Aß uptake both in the basal and insulin-stimulated states. Thus, insulin signaling in astrocytes plays an important role in the control of Aß uptake, thereby contributing to AD pathology, and highlighting the potential importance of targeting insulin signaling in astrocytes as a site for therapeutics for patients with T2D and AD.
Asunto(s)
Enfermedad de Alzheimer , Diabetes Mellitus Tipo 2 , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Astrocitos/metabolismo , Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ratones Transgénicos , Fenotipo , Modelos Animales de EnfermedadRESUMEN
Insulin acts through the insulin receptor (IR) tyrosine kinase to exert its classical metabolic and mitogenic actions. Here, using receptors with either short or long deletion of the ß-subunit or mutation of the kinase active site (K1030R), we have uncovered a second, previously unrecognized IR signaling pathway that is intracellular domain-dependent, but ligand and tyrosine kinase-independent (LYK-I). These LYK-I actions of the IR are linked to changes in phosphorylation of a network of proteins involved in the regulation of extracellular matrix organization, cell cycle, ATM signaling and cellular senescence; and result in upregulation of expression of multiple extracellular matrix-related genes and proteins, down-regulation of immune/interferon-related genes and proteins, and increased sensitivity to apoptosis. Thus, in addition to classical ligand and tyrosine kinase-dependent (LYK-D) signaling, the IR regulates a second, ligand and tyrosine kinase-independent (LYK-I) pathway, which regulates the cellular machinery involved in senescence, matrix interaction and response to extrinsic challenges.
Asunto(s)
Apoptosis , División Celular , Senescencia Celular , Proteínas Tirosina Quinasas , Receptor de Insulina , Apoptosis/genética , División Celular/genética , Insulina/metabolismo , Ligandos , Fosforilación , Proteínas Tirosina Quinasas/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Senescencia Celular/genética , Humanos , Animales , RatonesRESUMEN
Insulin and IGF-1 receptors (IR and IGF1R) are highly homologous and share similar signaling systems, but each has a unique physiological role, with IR primarily regulating metabolic homeostasis and IGF1R regulating mitogenic control and growth. Here, we show that replacement of a single amino acid at position 973, just distal to the NPEY motif in the intracellular juxtamembrane region, from leucine, which is highly conserved in IRs, to phenylalanine, the highly conserved homologous residue in IGF1Rs, resulted in decreased IRS-1/PI3K/Akt/mTORC1 signaling and increased Shc/Gab1/MAPK cell cycle signaling. As a result, cells expressing L973F-IR exhibited decreased insulin-induced glucose uptake, increased cell growth, and impaired receptor internalization. Mice with knockin of the L973F-IR showed similar alterations in signaling in vivo, and this led to decreased insulin sensitivity, a modest increase in growth, and decreased weight gain when mice were challenged with a high-fat diet. Thus, leucine-973 in the juxtamembrane region of the IR acts as a crucial residue differentiating IR signaling from IGF1R signaling.
Asunto(s)
Insulina , Receptor IGF Tipo 1 , Receptor de Insulina , Transducción de Señal , Animales , Ratones , Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/farmacología , Leucina/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfoproteínas/metabolismo , Fosforilación , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transducción de Señal/genética , HumanosRESUMEN
OBJECTIVE: Insulin is a principal metabolic hormone. It regulates a plethora of metabolic pathways in peripheral tissues. The highly homologous insulin-like growth factor 1 (IGF-1), on the other hand, is important for development and growth. Recent studies have shown that insulin and IGF-1 signaling plays fundamental roles in the brain. Loss of insulin or IGF-1 receptors in astrocytes leads to altered glucose handling, mitochondrial metabolism, neurovascular coupling, and behavioral abnormalities in mice. Here, we aim to investigate molecular mechanisms by which insulin and IGF-1 signaling regulates astrocyte functions. METHODS: IR-flox and IRKO primary astrocytes were treated with 100 nM insulin or IGF-1 for 6 h, and their transcriptomes were analyzed. Astrocytes with either IR deletion, IGF1R deletion or both were used to examine receptor-dependent transcriptional regulations using qPCR. Additional immunoblotting and confocal imaging studies were performed to functionally validate pathways involved in protein homeostasis. RESULTS: Using next-generation RNA sequencing, we show that insulin significantly regulates the expression of over 1,200 genes involved in multiple functional processes in primary astrocytes. Insulin-like growth factor 1 (IGF-1) triggers a similar robust transcriptional regulation in astrocytes. Thus, over 50% of the differentially expressed genes are regulated by both ligands. As expected, these commonly regulated genes are highly enriched in pathways involved in lipid and cholesterol biosynthesis. Additionally, insulin and IGF-1 induce the expression of genes involved in ribosomal biogenesis, while suppressing the expression of genes involved in autophagy, indicating a common role of insulin and IGF-1 on protein homeostasis in astrocytes. Insulin-dependent suppression of autophagy genes, including p62, Ulk1/2, and several Atg genes, is blunted only when both IR and IGF1R are deleted. CONCLUSIONS: In summary, insulin and IGF-1 potently suppress autophagy in astrocytes through transcriptional regulation. Both IR and IGF1R can elicit ligand-dependent transcriptional suppression of autophagy. These results demonstrate an important role of astrocytic insulin/IGF-1 signaling on proteostasis. Impairment of this regulation in insulin resistance and diabetes may contribute to neurological complications related to diabetes.
Asunto(s)
Factor I del Crecimiento Similar a la Insulina , Insulina , Animales , Ratones , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Insulina/metabolismo , Astrocitos/metabolismo , Regulación de la Expresión Génica , Autofagia/genéticaRESUMEN
Insulin signaling is mediated via a network of protein phosphorylation. Dysregulation of this network is central to obesity, type 2 diabetes and metabolic syndrome. Here we investigate the role of phosphatase binding protein Alpha4 (α4) that is essential for the serine/threonine protein phosphatase 2A (PP2A) in insulin action/resistance in adipocytes. Unexpectedly, adipocyte-specific inactivation of α4 impairs insulin-induced Akt-mediated serine/threonine phosphorylation despite a decrease in the protein phosphatase 2A (PP2A) levels. Interestingly, loss of α4 also reduces insulin-induced insulin receptor tyrosine phosphorylation. This occurs through decreased association of α4 with Y-box protein 1, resulting in the enhancement of the tyrosine phosphatase protein tyrosine phosphatase 1B (PTP1B) expression. Moreover, adipocyte-specific knockout of α4 in male mice results in impaired adipogenesis and altered mitochondrial oxidation leading to increased inflammation, systemic insulin resistance, hepatosteatosis, islet hyperplasia, and impaired thermogenesis. Thus, the α4 /Y-box protein 1(YBX1)-mediated pathway of insulin receptor signaling is involved in maintaining insulin sensitivity, normal adipose tissue homeostasis and systemic metabolism.
Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Adipocitos/metabolismo , Animales , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Homeostasis , Insulina/metabolismo , Masculino , Ratones , Fosforilación , Proteína Fosfatasa 2/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 1/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Serina/metabolismo , Treonina/metabolismo , Tirosina/metabolismoRESUMEN
Obesity-related cardiovascular complications are a major health problem worldwide. Overconsumption of the Western diet is a well-known culprit for the development of obesity. Although short-term weight loss through switching from a Western diet to a normal diet is known to promote metabolic improvement, its short-term effects on vascular parameters are not well characterized. Glucagon-like peptide 1 (GLP-1), an incretin with vasculoprotective properties, is decreased in plasma from patients who are obese. We hypothesize that obesity causes persistent vascular dysfunction in association with the downregulation of vascular glucagon-like peptide 1 receptor (GLP-1R). Female Wistar rats were randomized into three groups: lean received a chow diet for 28 wk, obese received a Western diet for 28 wk, and reverse obese received a Western diet for 18 wk followed by 12 wk of standard chow diet. The obese group exhibited increased body weight and body mass index, whereas the reverse obese group lost weight. Weight loss failed to reverse impaired vasodilation and high systolic blood pressure in obese rats. Strikingly, our results show that obese rats exhibit decreased serum levels of GLP-1 accompanied by decreased vascular GLP-1R expression. Weight loss recovered GLP-1 serum levels, however GLP-1R expression remained downregulated. Decreased Akt phosphorylation was observed in the obese and reverse obese group, suggesting that GLP-1/Akt signaling is persistently downregulated. Our results support that GLP-1 signaling is associated with obesity-related vascular dysfunction in females, and short-term weight loss does not guarantee recovery of vascular function. This study suggests that GLP-1R may be a potential target for therapeutic intervention in obesity-related hypertension in females.NEW & NOTEWORTHY Although short-term weight loss successfully improved metabolic parameters, it failed to correct vascular dysfunction present in obese female rats. Vascular GLP-1/Akt signaling was decreased in both obese rats and those with short-term weight loss, suggesting it may be a potential target for therapeutic intervention in obesity-related persistent vascular dysfunction in obese females.
Asunto(s)
Receptores de Péptidos Similares al Glucagón , Proteínas Proto-Oncogénicas c-akt , Animales , Peso Corporal , Femenino , Péptido 1 Similar al Glucagón , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Obesidad/metabolismo , Ratas , Ratas Wistar , Pérdida de Peso/fisiologíaRESUMEN
Since its discovery over 100 years ago, insulin has been recognized as a key hormone in control of glucose homeostasis. Deficiencies of insulin signaling are central to diabetes and many other disorders. The brain is among the targets of insulin action, and insulin resistance is a major contributor to many diseases, including brain disorders. Here, we summarize key roles of insulin action in the brain and how this involves different brain cell types. Disordered brain insulin signaling can also contribute to neuropsychiatric diseases, affecting brain circuits involved in mood and cognition. Understanding of insulin signaling in different brain cell types/circuits and how these are altered in disease may lead to the development of new therapeutic approaches to these challenging disorders.
Asunto(s)
Enfermedad de Alzheimer , Resistencia a la Insulina , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Sistema Nervioso Central , Homeostasis , Humanos , Insulina/metabolismoRESUMEN
Coronavirus disease 2019 (COVID-19) represents a systemic disease that may cause severe metabolic complications in multiple tissues including liver, kidney, and cardiovascular system. However, the underlying mechanisms and optimal treatment remain elusive. Our study shows that impairment of ACE2 pathway is a key factor linking virus infection to its secondary metabolic sequelae. By using structure-based high-throughput virtual screening and connectivity map database, followed with experimental validations, we identify imatinib, methazolamide, and harpagoside as direct enzymatic activators of ACE2. Imatinib and methazolamide remarkably improve metabolic perturbations in vivo in an ACE2-dependent manner under the insulin-resistant state and SARS-CoV-2-infected state. Moreover, viral entry is directly inhibited by these three compounds due to allosteric inhibition of ACE2 binding to spike protein on SARS-CoV-2. Taken together, our study shows that enzymatic activation of ACE2 via imatinib, methazolamide, or harpagoside may be a conceptually new strategy to treat metabolic sequelae of COVID-19.
Asunto(s)
Tratamiento Farmacológico de COVID-19 , Mesilato de Imatinib/uso terapéutico , Enfermedades Metabólicas/tratamiento farmacológico , Metazolamida/uso terapéutico , SARS-CoV-2/efectos de los fármacos , Enzima Convertidora de Angiotensina 2/efectos de los fármacos , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , COVID-19/complicaciones , COVID-19/metabolismo , COVID-19/virología , Células Cultivadas , Chlorocebus aethiops , Regulación hacia Abajo/efectos de los fármacos , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Mesilato de Imatinib/farmacología , Masculino , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/virología , Metazolamida/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Ratones Transgénicos , SARS-CoV-2/fisiología , Células Vero , Internalización del Virus/efectos de los fármacosRESUMEN
Critical limb ischemia (CLI) is a severe form of peripheral artery diseases (PAD) and seriously endangers the health of people. Therapeutic angiogenesis represents an important treatment strategy for CLI; various methods have been applied to enhance collateral circulation. However, the current development drug therapy to promote angiogenesis is limited. Resveratrol (RSV), a polyphenol compound extracted from plants, has various properties such as anti-oxidative, anti-inflammatory and anti-cancer effects. Whether RSV exerts protective effects on CLI remains elusive. In the current study, we demonstrated that oral intake of RSV significantly improved hind limb ischemia in mice, and increased the expression of phosphorylated Forkhead box class-O1 (FoxO1). RSV treatment in human umbilical vein endothelial cells (HUVECs) could increase the phosphorylation of FoxO1 and its cytoplasmic re-localization to promote angiogenesis. Then we manipulated FoxO1 in HUVECs to further verify that the effect of RSV on angiogenesis is in a FoxO1-dependent manner. Furthermore, we performed metabolomics to screen the metabolic pathways altered upon RSV intervention. We found that the pathways of pyrimidine metabolism, purine metabolism, as well as alanine, aspartate and glutamate metabolism, were highly correlated with the beneficial effects of RSV on the ischemic muscle. This study provides a novel direction for the medical therapy to CLI.
Asunto(s)
Isquemia Crónica que Amenaza las Extremidades/tratamiento farmacológico , Proteína Forkhead Box O1/metabolismo , Neovascularización Patológica/tratamiento farmacológico , Resveratrol/farmacología , Animales , Isquemia Crónica que Amenaza las Extremidades/metabolismo , Proteína Forkhead Box O1/genética , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Metabolómica , Ratones , Ratones Endogámicos C57BL , Neovascularización Patológica/metabolismo , Fosforilación/efectos de los fármacosRESUMEN
Abnormal glucose and lipid metabolism in COVID-19 patients were recently reported with unclear mechanism. In this study, we retrospectively investigated a cohort of COVID-19 patients without pre-existing metabolic-related diseases, and found new-onset insulin resistance, hyperglycemia, and decreased HDL-C in these patients. Mechanistically, SARS-CoV-2 infection increased the expression of RE1-silencing transcription factor (REST), which modulated the expression of secreted metabolic factors including myeloperoxidase, apelin, and myostatin at the transcriptional level, resulting in the perturbation of glucose and lipid metabolism. Furthermore, several lipids, including (±)5-HETE, (±)12-HETE, propionic acid, and isobutyric acid were identified as the potential biomarkers of COVID-19-induced metabolic dysregulation, especially in insulin resistance. Taken together, our study revealed insulin resistance as the direct cause of hyperglycemia upon COVID-19, and further illustrated the underlying mechanisms, providing potential therapeutic targets for COVID-19-induced metabolic complications.
Asunto(s)
COVID-19/sangre , Hiperglucemia/sangre , Resistencia a la Insulina , Metabolismo de los Lípidos , Lípidos/sangre , SARS-CoV-2/metabolismo , Adulto , Anciano , Biomarcadores/sangre , COVID-19/complicaciones , Femenino , Humanos , Hiperglucemia/etiología , Masculino , Persona de Mediana Edad , Estudios RetrospectivosRESUMEN
The brain is now recognized as an insulin-sensitive tissue; however, the role of changing insulin concentrations in the peripheral circulation in gene expression in the brain is largely unknown. Here, we performed a hyperinsulinemic-euglycemic clamp on 3-month-old male C57BL/6 mice for 3 h. We show that, in comparison with results in saline-infused controls, increases in peripheral insulin within the physiological range regulate expression of a broad network of genes in the brain. Insulin regulates distinct pathways in the hypothalamus (HTM), hippocampus, and nucleus accumbens. Insulin shows its most robust effect in the HTM and regulates multiple genes involved in neurotransmission, including upregulating expression of multiple subunits of GABA-A receptors, Na+ and K+ channels, and SNARE proteins; differentially modulating glutamate receptors; and suppressing multiple neuropeptides. Insulin also strongly modulates metabolic genes in the HTM, suppressing genes in the glycolysis and pentose phosphate pathways, while increasing expression of genes regulating pyruvate dehydrogenase and long-chain fatty acyl-CoA and cholesterol biosynthesis, thereby rerouting of carbon substrates from glucose metabolism to lipid metabolism required for the biogenesis of membranes for neuronal and glial function and synaptic remodeling. Furthermore, based on the transcriptional signatures, these changes in gene expression involve neurons, astrocytes, oligodendrocytes, microglia, and endothelial cells. Thus, peripheral insulin acutely and potently regulates expression of a broad network of genes involved in neurotransmission and brain metabolism. Dysregulation of these pathways could have dramatic effects in normal physiology and diabetes.
Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/metabolismo , Hipotálamo/metabolismo , Insulina/farmacología , Lipogénesis/fisiología , Núcleo Accumbens/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Técnica de Clampeo de la Glucosa , Hipocampo/efectos de los fármacos , Hipotálamo/efectos de los fármacos , Lipogénesis/efectos de los fármacos , Masculino , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Núcleo Accumbens/efectos de los fármacosRESUMEN
The regulation of glucose-stimulated insulin secretion and glucose excursion has a sensory component that operates in a sex-dependent manner. OBJECTIVE: Here, we aim to dissect the basis of the sexually dimorphic interaction between sensory neurons and pancreatic ß cells and its overall impact on insulin release and glucose homeostasis. METHODS: We used viral retrograde tracing techniques, surgical and chemodenervation models, and primary cell-based co-culture systems to uncover the biology underlying sex differences in sensory modulation of pancreatic ß-cell activity. RESULTS: Retrograde transsynaptic labeling revealed a sex difference in the density of sensory innervation in the pancreas. The number of sensory neurons emanating from the dorsal root and nodose ganglia that project in the pancreas is higher in male than in female mice. Immunostaining and confocal laser scanning microscopy confirmed the higher abundance of peri-islet sensory axonal tracts in the male pancreas. Capsaicin-induced sensory chemodenervation concomitantly enhanced glucose-stimulated insulin secretion and glucose clearance in male mice. These metabolic benefits were blunted when mice were orchidectomized prior to the ablation of sensory nerves. Interestingly, orchidectomy also lowered the density of peri-islet sensory neurons. In female mice, capsaicin treatment did not affect glucose-induced insulin secretion nor glucose excursion and ovariectomy did not modify these outcomes. Interestingly, same- and opposite-sex sensory-islet co-culture paradigms unmasked the existence of potential gonadal hormone-independent mechanisms mediating the male-female difference in sensory modulation of islet ß-cell activity. CONCLUSION: Taken together, these data suggest that the sex-biased nature of the sensory control of islet ß-cell activity is a result of a combination of neurodevelopmental inputs, sex hormone-dependent mechanisms and the potential action of somatic molecules encoded by the sex chromosome complement.