Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124494, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-38788508

RESUMEN

Chiral analysis with simple devices is of great importance for analytical chemistry. Based on the photothermal (PT) effect, a simple chiral sensor with a portable laser device as the light source and a thermometer as the detection tool was developed for the chiral recognition of tryptophan (Trp) isomers and the sensitive sensing of one isomer (L-Trp). Gold nanorods (GNRs), which have outstanding photo-thermal conversion ability due to their localized surface plasma resonance (LSPR) effect, are used as PT reagents, and biomacromolecules bovine serum albumin (BSA) are used as natural chiral sources, and thus, GNRs@BSA was obtained through Au-S bonds. The resultant GNRs@BSA displays higher affinity toward L-Trp than D-Trp owing to the inherent chirality of BSA. Under the irradiation of near-infrared (NIR) light, the temperature of GNRs@BSA//L-Trp is greatly lower than that of GNRs@BSA//D-Trp due to its greatly decreased thermal conductivity, and thus chiral discrimination of Trp isomers can be achieved. In addition, the developed PT effect-based chiral sensor can be used for sensitive detection of L-Trp, and the linear range and limit of detection (LOD) are 1 µM-10 mM and 0.43 µM, respectively.


Asunto(s)
Oro , Límite de Detección , Nanotubos , Albúmina Sérica Bovina , Triptófano , Oro/química , Albúmina Sérica Bovina/química , Nanotubos/química , Triptófano/análisis , Triptófano/química , Estereoisomerismo , Bovinos , Animales , Temperatura , Espectrometría de Fluorescencia
2.
Anal Chem ; 96(19): 7626-7633, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38688014

RESUMEN

To date, achieving enantioselective electroanalysis for electrochemically silent chiral molecules is still highly desired. Here, an ionic covalent organic framework (COF) consisting of the pyridinium cation was derived from the tripyridinium Zincke salt and 1,4-phenylenediamine in a one-pot reaction. The electrochemical measurements revealed that the ionic backbone contributed to the electron transfer with a low charge transfer resistance. Besides, the π-π+ interaction between the pyridinium cation and ferrocenyl unit can promote the absorption of electroactive chiral ferrocenyl reagents into the hole of COF, so as to afford the electrochemical signals by themselves, replacing the testing enantiomers. As a result, the electroactive complex used as an electrochemical platform was highly effective at enantiomerically recognizing amino alcohols (prolinol, valinol, leucinol, and alaninol) and amino acids (methionine, serine, and penicillamine), giving the ratios of current intensity between l- and d-enantiomers in the range of 1.46-1.72. Moreover, the density functional theory calculations determined the possible intermolecular interactions between the testing enantiomers and chiral selector: namely, hydrogen bonds and electrostatic attractions. Overall, the present work offers an effective strategy to enlarge the electrochemical scope for chiral recognition based on electroactive chiral COFs.

3.
Talanta ; 272: 125850, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38437760

RESUMEN

Efficient discrimination of amino acids (AAs) isomers is of significant importance for life science and analytical chemistry. Here, a dual-mode chiral discrimination strategy is proposed for visual and electrochemical chiral discrimination of tryptophan (Trp) isomers. Shikimic acid chiral ionic liquids (SCIL) is coordinated with copper ions (Cu2+), and the obtained SCIL-Cu2+ can form ternary complexes with the Trp isomers. Owing to the inherent chirality of SCIL and the reverse homochirality of L-Trp and D-Trp, the ternary complex of SCIL-Cu-D-Trp has higher stability than SCIL-Cu-L-Trp, as revealed by the calculated stability constants (K) and changes in Gibbs free energy (ΔG). The difference in the stability can be utilized for the chiral discrimination of L-Trp and D-Trp, resulting in discernible differences in colors and the electrochemical signals of the Trp isomers. Besides Trp, the isomers of phenylalanine (Phe) can also be discriminated by the proposed dual-mode chiral discrimination strategy with the SCIL-Cu2+ complex.

4.
ACS Appl Mater Interfaces ; 16(10): 13161-13169, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38412557

RESUMEN

Although several studies related with the electrochemiluminescence (ECL) technique have been reported for chiral discrimination, it still has to face some limitations, namely, complex synthetic pathways and a relatively low recognition efficiency. Herein, this study introduces a facile strategy for the synthesis of ECL-active chiral covalent organic frameworks (COFs) employed as a chiral recognition platform. In this artificial structure, ruthenium(II) coordinated with the dipyridyl unit of the COF and enantiopure cyclohexane-1,2-diamine was harnessed as the ECL-active unit, which gave strong ECL emission in the presence of the coreactant reagent (K2S2O8). When the as-prepared COF was used as a chiral ECL-active platform, clear discrimination was observed in the response of the ECL intensity toward l- and d-enantiomers of amino acids, including tryptophan, leucine, methionine, threonine, and histidine. The biggest ratio of the ECL intensity between different configurations was up to 1.75. More importantly, a good linear relationship between the enantiomeric composition and the ECL intensity was established, which was successfully employed to determine the unknown enantiomeric compositions of the real samples. In brief, we believe that the proposed ECL-based chiral platform provides an important reference for the determination of the configuration and enantiomeric compositions.


Asunto(s)
Técnicas Biosensibles , Estructuras Metalorgánicas , Aminoácidos , Mediciones Luminiscentes/métodos , Estereoisomerismo , Metionina , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos
5.
Analyst ; 149(6): 1753-1758, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38363120

RESUMEN

A chiral metal-organic framework (CMOF) was synthesized by introducing L-histidine (L-His) to zeolitic imidazolate framework-8 (ZIF-8) and then grafting with carboxymethyl-ß-cyclodextrin (CM-ß-CD). Compared with L-His-ZIF-8, the CM-ß-CD-functionalized L-His-ZIF-8 (L-His-ZIF-8-CD) showed significantly enhanced discrimination ability for the tryptophan (Trp) enantiomers owing to the inherent chirality of CM-ß-CD. The specificity of the chiral interface was also studied, and the results indicated that the discrimination ability for Trp enantiomers is significantly stronger than that for the enantiomers of cysteine (Cys) and tyrosine (Tyr), which might be due to the better matching between the indole ring of Trp and the chiral cavity of CM-ß-CD.

6.
Anal Chem ; 96(9): 3942-3950, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38394220

RESUMEN

Electrochemiluminescence (ECL), integrating the characteristics of electrochemistry and fluorescence, has the advantages of high sensitivity and low background. However, only a few studies have been reported for enantioselective sensing based on the ECL-active platform because of the huge challenges in constructing tunable chiral ECL luminophores. Here, we developed a facile strategy to design and prepare ECL-active chiral covalent organic frameworks (COFs) Ph-triPy+-(R)-Ru(II) for enantioselective sensing. In such an artificial structure, the ionic skeleton of COFs was beneficial to the electron transfer on the working electrode surface and the chiral Ru-ligand was used as the chiral ECL-active luminophore. It was found that Ph-triPy+-(R)-Ru(II) coupled with sodium persulfate (Na2S2O8) as the coreactant exhibited obvious ECL signals. More importantly, a clear difference toward l- and d-enantiomers was observed in the response of the ECL intensity, resulting in a uniform recognition law. That is, for amino alcohols, d-enantiomers (1 mM) measured by Ph-triPy+-(R)-Ru(II) showed a higher ECL intensity compared with l-enantiomers. Differently, amino acids (1 mM) gave an inverse recognition phenomenon. The ECL intensity ratios between l- and d-enantiomers (1 mM) are in the range of 1.25-1.94 for serine, aspartic acid, glutamic acid, valine, leucine, leucinol, and valinol. What is more interesting is that the ECL intensity was closely related to the concentration of l-amino alcohols and d-amino acids, whereas their inverse configurations remained unchanged. In a word, the present concept demonstrates a feasible direction toward chiral ECL-active COFs and their potential for efficient enantioselective sensing.

7.
Anal Chem ; 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38335728

RESUMEN

Although electroactive chiral covalent-organic frameworks (CCOFs) are considered an ideal platform for chiral electroanalysis, they are rarely reported due to the difficult selection of suitable precursors. Here, a facile strategy of liquid-liquid interfacial polymerization was carried out to synthesize the target electroactive CCOFs Ph-Py+-(S,S)-DPEA·PF6- and Ph-Py+-(R,R)-DPEA·PF6-. That is, a trivalent Zincke salt (4,4',4″-(benzene-1,3,5-triyl)tris(1-(2,4-dinitrophenyl)pyridin-1-ium)) trichloride (Ph-Py+-NO2) and enantiopure 1,2-diphenylethylenediamine (DPEA) were dissolved in water and chloroform, respectively. The Zincke reaction occurs at the interface, resulting in uniform porosity. As expected, the cyclic voltammetry and differential pulse voltammetry measurements showed that the tripyridinium units of the CCOFs afforded obvious electrochemical responses. When Ph-Py+-(S,S)-DPEA·PF6- was modified onto the surface of a glassy carbon electrode as a chiral sensor, the molecules, which included tryptophan, aspartic acid, serine, tyrosine, glutamic acid, mandelic acid, and malic acid, were enantioselectively recognized in the response of the peak current. Very importantly, the discriminative electrochemical signals were derived from Ph-Py+-(S,S)-DPEA·PF6-. The best peak current ratios between l- and d-enantiomers were in the range of 1.31-2.68. Besides, a good linear relationship between peak currents and enantiomeric excess (ee) values was established, which was successfully harnessed to determine the ee values for unknown samples. In a word, the current work provides new insight and potential of electroactive CCOFs for enantioselective sensing in a broad range.

8.
Talanta ; 271: 125758, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38340415

RESUMEN

Au nanoparticles (AuNPs) are decorated by l-cysteine (L-Cys), and the resultant chiral L-Cys/AuNPs can be used for colorimetric discrimination and spectroscopic detection of the tyrosine (Tyr) enantiomers. Melamine (Mel) can induce the aggregation of the L-Cys/AuNPs through ligand exchange, leading to a distinct color change from wine red to purple. Owing to the same rotatory direction of L-Cys/AuNPs and L-Tyr, the L-Cys/AuNPs exhibit a significantly higher binding affinity toward L-Tyr than D-Tyr, and thus the Mel induced aggregation of the L-Cys/AuNPs is greatly alleviated by the protection from the L-Tyr protective layer. Therefore, the Tyr enantiomers can be simply discriminated by naked eyes. In addition, the absorbance of the aggregated L-Cys/AuNPs at ∼630 nm increases linearly with decreasing concentrations of L-Tyr ranging from 10 nM to 1 mM due to the weakened protection effect from L-Tyr, and thus spectroscopic detection of L-Tyr can also be accomplished by the developed L-Cys/AuNPs with a limit of detection (LOD) of 5.3 nM.


Asunto(s)
Cisteína , Nanopartículas del Metal , Triazinas , Cisteína/química , Colorimetría/métodos , Oro/química , Tirosina , Nanopartículas del Metal/química
9.
J Colloid Interface Sci ; 651: 128-137, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37542888

RESUMEN

CoSe2/CoP with rich Se- and P-vacancies and heterogeneous interfaces (v-CoSe2/CoP) is grown on the surface of nickel foam via a two-step strategy: electrodeposition and NaBH4 reduction, which can be used as the cathode material in asymmetric supercapacitors. The SEM characterization reveals the honeycomb-like structure of the v-CoSe2/CoP, and the results of EPR, XPS and HRTEM reveal the existence of anionic vacancies and heterogeneous interfaces in the v-CoSe2/CoP. The as-fabricated v-CoSe2/CoP exhibits high specific capacitance (3206 mF cm-2 at 1.0 mA cm-2) and cyclic stability (91 % capacitance retention after 2000 cycles). An asymmetric supercapacitor is assembled by using the v-CoSe2/CoP and activated carbon (AC) as cathode and anode materials, respectively, which displays a high energy density of 40.6 Wh kg-1 at the power density of 211.5 W kg-1. The outstanding electrochemical performances of the v-CoSe2/CoP might be ascribed to the synergistic effects of Se- and P-vacancies and the heterogeneous interfaces in the v-CoSe2/CoP.

10.
Anal Chem ; 95(22): 8569-8577, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37204809

RESUMEN

Reliable chiral discrimination of enantiomers with simple devices is of great importance for chiral analysis. Here, a chiral sensing platform is developed for chiral discrimination through two different modes: electrochemistry and temperature. Au nanoparticles (AuNPs) are grown in situ on the nanosheets of MXene by utilizing the strong metal reduction ability of MXene, which can be further used for the anchoring of N-acetyl-l-cysteine (NALC), a commonly used chiral source, through Au-S bonds. Owing to the excellent electrical conductivity and photothermal conversion efficiency of MXene, the resultant MXene-AuNPs-NALC is applied in the construction of a chiral sensing platform for the discrimination of tryptophan (Trp) enantiomers through two different modes: electrochemistry and temperature. Compared with conventional single-mode chiral sensors, the proposed chiral sensing platform can integrate two different indicators (currents and temperature) into one chiral sensor, greatly improving the reliability of chiral discrimination.

11.
Anal Chem ; 95(15): 6467-6475, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37029721

RESUMEN

Chiral metal-organic frameworks (CMOFs) have attracted considerable attention in chiral discrimination and separation. In this work, a simple CMOF is synthesized through a facile one-pot method by using Zn(II), tetra(4-carboxyphenyl)-porphyrin (TCPP), and d-phenylalanine methyl ester (d-Phe-OMe) as metal ion, organic ligand, and chiral source, respectively. Interestingly, the CMOFs synthesized at different temperatures (25 and 160 °C) display quite different morphologies and diametrically opposite chirality due to the different interaction modes between TCPP and d-Phe-OMe at 25 and 160 °C. Next, the CMOFs synthesized at 25 and 160 °C are utilized for the chiral discrimination of the isomers of tryptophan (Trp), resulting in exactly the reverse effect. The developed CMOF-based chiral sensors also exhibit excellent reproducibility, suggesting their great potential for chiral analysis.

12.
Int J Biol Macromol ; 233: 123616, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36773878

RESUMEN

A sequential delivery system based on MoS2 nanoflower (MoS2 NF) doped chitosan (CS)/oxidized dextran (OD) hydrogels is developed for the treatment of colon cancer. 5-Fluorouracil (5-FU) is combined with polyethylenimine (PEI) decorated MoS2 NF via electrostatic attraction and hydrogen bonding, and the obtained 5-FU/PEI/MoS2 is encapsulated by 1-tetradecanol (TD), a commonly used phase transition material. The resultant TD/5-FU/PEI/MoS2 (TFPM) is then co-encapsulated with methotrexate (MTX) in the CS/OD hydrogels generated via Schiff base reaction and electrostatic attraction. Because the electrostatic attraction between CS and OD is pH-sensitive, MTX and TD/5-FU/PEI/MoS2 can be easily released from the hydrogels at pH 7.4. MoS2 is an outstanding photothermal agent, and the generated hyperthermia under near infrared (NIR) irradiation can lead to the melting of TD and the consequent release of 5-FU encapsulated. More importantly, the generated hyperthermia under NIR irradiation can realize the chemo-photothermal synergistic tumor therapy. Finally, the practicability of the developed sequential delivery system is demonstrated by cytotoxicity test.


Asunto(s)
Quitosano , Neoplasias del Colon , Hipertermia Inducida , Humanos , Molibdeno , Dextranos , Hidrogeles , Neoplasias del Colon/tratamiento farmacológico , Fluorouracilo/farmacología , Doxorrubicina
13.
Bioelectrochemistry ; 151: 108375, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36716516

RESUMEN

Accurate detection of SARS-CoV-2 spike (SARS-CoV-2-S) protein is of clinical significance for early diagnosis and timely treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Herein, a surface molecularly imprinted miniature biosensor was fabricated. Au nanoparticles (AuNPs), reduced graphene oxide (rGO), poly(methylene blue)/poly(ionic liquids) and poly(ionic liquids) were successively electrodeposited onto the pinpoint of an acupuncture needle (AN). The molecularly imprinted miniature biosensor was obtained after the template of SARS-CoV-2-S protein was removed, which could be used for sensitive detection of SARS-CoV-2-S protein. The linear range and limit of detection (LOD) were 0.1 âˆ¼ 1000 ng mL-1 and 38 pg mL-1, respectively, which were superior to other molecularly imprinted biosensors previously reported. The developed miniature biosensor also exhibited high specificity and stability. The reliability of the biosensor was evaluated by the detection of SARS-CoV-2-S protein in clinical serum samples.


Asunto(s)
Terapia por Acupuntura , Técnicas Biosensibles , COVID-19 , Líquidos Iónicos , Nanopartículas del Metal , Impresión Molecular , Humanos , Glicoproteína de la Espiga del Coronavirus , Oro , Técnicas Electroquímicas , Reproducibilidad de los Resultados , Electrodos , SARS-CoV-2
14.
Analyst ; 148(4): 919-925, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36692114

RESUMEN

An electrochemical chiral sensing platform based on a multi-substituted ferrocene-cuprous ion (Cu+) complex is constructed for the discrimination of electroactive amino acid (AA) isomers. Due to the opposite configurations of the AA isomers, the developed multi-substituted ferrocene-Cu+ can preferably combine with a right-handed AA (D-AA) isomer to form the ternary complex of multi-substituted ferrocene-Cu+-D-AA through π-π interactions, resulting in higher peak currents of D-AA. Therefore, the isomers of electroactive AA can be successfully discriminated. Among the tested electroactive AA isomers, the chiral sensing platform exhibits higher discrimination capability toward the isomers of tryptophan (Trp) than that of tyrosine (Tyr) and cysteine (Cys), which might be ascribed to the stronger π-π interactions between the benzene ring of the multi-substituted ferrocene and the indole ring of the Trp isomers.


Asunto(s)
Aminoácidos , Triptófano , Metalocenos , Triptófano/química
15.
Int J Biol Macromol ; 224: 1294-1302, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36306897

RESUMEN

A simple and smart drug controlled delivery system is developed in this work. Biodegradable mesoporous silica nanoparticles (BMSN) were first synthesized by introducing disulfide during the synthesis of mesoporous silica nanoparticles (MSN), which were used for the loading of methotrexate (MTX), an anti-cancer drug. The MTX loaded BMSN (BMSN-MTX) was then encapsulated in the hydrogels of carboxymethyl chitosan (CMCS)/oxidized pullulan (OPL) generated through Schiff base reaction. The acylhydrazone bonds (-N=CH-) between CMCS and OPL are prone to be hydrolyzed in acidic medium while the disulfide linkage (-S-S-) in the BMSN can be cleaved in the presence of glutathione (GSH), and thus the delivery of MTX from the BMSN-MTX-gel can be triggered by both pH and GSH. The results of release kinetics reveal that the delivery of MTX from the biodegradable hydrogels is controlled by Higuchi model. Finally, good biocompatibility and pronounced cytotoxicity of the developed BMSN-MTX-gel are confirmed by cytotoxicity test.


Asunto(s)
Quitosano , Nanopartículas , Quitosano/química , Dióxido de Silicio/química , Sistemas de Liberación de Medicamentos/métodos , Metotrexato/química , Nanopartículas/química , Concentración de Iones de Hidrógeno , Hidrogeles/química , Portadores de Fármacos/química
16.
Analyst ; 147(22): 5068-5074, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36200860

RESUMEN

A novel electrochemical chiral sensor has been designed based on the principle of competitive host-guest interaction and utilized for the discrimination of electroinactive proline (Pro) isomers. Electroactive methylene blue (MB) was used as the signal probe, which was combined with multi-walled carbon nanotubes (MWCNTs)-decorated ß-cyclodextrin (ß-CD), via host-guest interaction, where the oxidation peak currents of MB decreased after isomers of Pro were combined with the MWCNTs-ß-CD via a competitive host-guest interaction. Due to the steric configuration of L-Pro matching the cavity of ß-CD, more L-Pro than D-Pro was combined with MWCNTs-ß-CD, resulting in a more pronounced decrease of MB peak currents. Therefore, the isomers of Pro could be discriminated. Besides Pro, the isomers of electroinactive histidine (His) could also be discriminated with the chiral sensor. In addition, the contents of L-Pro in non-racemic mixtures could be detected with the developed chiral sensor.


Asunto(s)
Técnicas Electroquímicas , Nanotubos de Carbono , Técnicas Electroquímicas/métodos , Nanotubos de Carbono/química , Aminoácidos , Azul de Metileno/química
17.
Org Lett ; 24(28): 5226-5229, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35822909

RESUMEN

Two achiral aromatic carboxylic acids that included the 1,8-naphthalimide group and an imidazolium cation were synthesized and exploited as chiroptical sensors. These compounds showed the real-time discrimination and enantiomeric excess determination of chiral amines and amino alcohols via an acid-base interaction, especially for UV-silent chiral compounds.

18.
Anal Chem ; 94(26): 9399-9406, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35715196

RESUMEN

Chiral analysis is of significant importance for living organisms since chirality is the fundamental phenomenon in nature. In this work, a bifunctional electrochemiluminescent (ECL) platform is constructed for chiral discrimination and chiral sensing. 3-Mercaptopropionic acid-functionalized CdSe quantum dots (CdSe QDs) are combined with aminated TiO2 nanotubes (NH2-TiNTs) via amidation. The resultant CdSe QDs/TiNTs display significantly enhanced ECL signals due to the synergistic effect between CdSe QDs and TiNTs, which are then used for the chiral discrimination of the isomers of nine chiral amino acids (AAs) in the presence of d-AA oxidase (DAAO). DAAO can selectively catalyze the oxidation of d-AAs to generate H2O2, which acts as the coreaction reagent and triggers the ECL signals of CdSe QDs/TiNTs, and thus, the isomers of the nine chiral AAs can be effectively discriminated. In addition, the as-constructed ECL platform can also be used for the sensitive detection of d-AAs in the presence of DAAO with a wide linear range and a low limit of detection. These findings suggest that the CdSe QDs/TiNTs can work as a bifunctional ECL platform (chiral discrimination and chiral sensing), which might be an advanced ECL platform for biomedical applications.


Asunto(s)
Compuestos de Cadmio , Nanotubos , Puntos Cuánticos , Compuestos de Selenio , Compuestos de Cadmio/química , Peróxido de Hidrógeno , Mediciones Luminiscentes , Puntos Cuánticos/química , Compuestos de Selenio/química , Titanio
19.
Anal Chem ; 94(15): 6050-6056, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35389624

RESUMEN

At present, chiral electroanalysis of nonelectroactive chiral compounds still remains a challenge because they cannot provide an electrochemical signal by themselves. Here, a strategy based on a competitive self-assembly interaction of a ferrocene (Fc) unit and the testing isomers entering into the cavity of ß-cyclodextrin (ß-CD) was carried out for chiral electroanalysis. First of all, the Fc derivative was directly bridged to silica microspheres, followed by inclusion into the cavity of ß-CD. As expected, once it was modified onto the surface of a carbon working electrode as an electrochemical sensor, SiO2@Fc-CD-WE, its differential pulse voltammetry signal would markedly decrease compared with the uncovered Fc. Next, when l- and d-isomers of amino acids that included histidine, threonine, phenylalanine, and glutamic acid were examined using SiO2@Fc-CD-WE, it showed an enantioselective entry of amino acids into the cavity of ß-cyclodextrin instead of Fc, resulting in the release of Fc with signal enhancement. For histidine, glutamic acid, and threonine, l-isomers showed a higher peak current response compared with d-isomers. The peak current ratios between l- and d-isomers were 2.88, 1.21, and 1.40, respectively. At the same time, the opposite phenomenon occurred for phenylalanine with a peak current ratio of 3.19 between d- and l-isomers. In summary, we are assured that the recognition strategy based on the supramolecular interaction can enlarge the detection range of chiral compounds by electrochemical analysis.


Asunto(s)
Aminoácidos , beta-Ciclodextrinas , Técnicas Electroquímicas/métodos , Glutamatos , Histidina , Fenilalanina/análisis , Dióxido de Silicio , Estereoisomerismo , Treonina , beta-Ciclodextrinas/química
20.
Bioelectrochemistry ; 146: 108110, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35367932

RESUMEN

To introduce abundant carboxyl (COOH) groups to the surface of multi-walled carbon nanotubes (MWCNTs) while maintaining the pristine structure of MWCNTs, 3,4,9,10-perylene tetracarboxylic acid (PTCA) was non-covalently grafted to the sidewalls of MWCNTs. The obtained PTCA functionalized MWCNTs (MWCNTs-PTCA) functioned as a scaffold for the further introduction of chitosan (CS) via electrostatic attractions and hydrogen-bonds. The resultant CS/MWCNTs-PTCA could be used for electrochemical chiral sensing of tryptophan (Trp) enantiomers due to the intrinsic chirality of CS and the high electrocatalytic activity of MWCNTs. Under optimized conditions, the Trp enantiomers could be effectively discriminated at the CS/MWCNTs-PTCA modified electrode by differential pulse voltammetry (DPV), demonstrating that the developed CS/MWCNTs-PTCA might be a potential candidate for the construction of electrochemical chiral sensors.


Asunto(s)
Quitosano , Nanotubos de Carbono , Perileno , Quitosano/química , Técnicas Electroquímicas , Electrodos , Nanotubos de Carbono/química , Perileno/química , Triptófano
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...