Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Endocrinol (Lausanne) ; 14: 1085041, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36824355

RESUMEN

Morbidity and mortality of cardiovascular diseases (CVDs) are exceedingly high worldwide. Researchers have found that the occurrence and development of CVDs are closely related to intestinal microecology. Imbalances in intestinal microecology caused by changes in the composition of the intestinal microbiota will eventually alter intestinal metabolites, thus transforming the host physiological state from healthy mode to pathological mode. Trimethylamine N-oxide (TMAO) is produced from the metabolism of dietary choline and L-carnitine by intestinal microbiota, and many studies have shown that this important product inhibits cholesterol metabolism, induces platelet aggregation and thrombosis, and promotes atherosclerosis. TMAO is directly or indirectly involved in the pathogenesis of CVDs and is an important risk factor affecting the occurrence and even prognosis of CVDs. This review presents the biological and chemical characteristics of TMAO, and the process of TMAO produced by gut microbiota. In particular, the review focuses on summarizing how the increase of gut microbial metabolite TMAO affects CVDs including atherosclerosis, heart failure, hypertension, arrhythmia, coronary artery disease, and other CVD-related diseases. Understanding the mechanism of how increases in TMAO promotes CVDs will potentially facilitate the identification and development of targeted therapy for CVDs.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/fisiología , Colina/metabolismo , Metilaminas
2.
Cardiol Res Pract ; 2021: 8874450, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33777449

RESUMEN

The number of confirmed COVID-19 cases has increased drastically; however, information regarding the impact of this disease on the occurrence of arrhythmias is scarce. The aim of this study was to determine the impact of COVID-19 on arrhythmia occurrence. This prospective study included patients with COVID-19 treated at the Leishenshan Temporary Hospital of Wuhan City, China, from February 24 to April 5, 2020. Demographic, comorbidity, and arrhythmias data were collected from patients with COVID-19 (n = 84) and compared with control data from patients with bacterial pneumonia (n = 84) infection. Furthermore, comparisons were made between patients with severe and nonsevere COVID-19 and between older and younger patients. Compared with patients with bacterial pneumonia, those with COVID-19 had higher total, mean, and minimum heart rates (all P < 0.01). Patients with severe COVID-19 (severe and critical type diseases) developed more atrial arrhythmias compared with those with nonsevere symptoms. Plasma creatine kinase isoenzyme (CKMB) levels (P=0.01) were higher in the severe group than in the nonsevere group, and there were more deaths in the severe group than in the nonsevere group (6 (15%) vs. 3 (2.30%); P=0.05). Premature atrial contractions (PAC) and nonsustained atrial tachycardia (NSAT) were significantly positively correlated with plasma CKMB levels but not with high-sensitive cardiac troponin I or myoglobin levels. Our data demonstrate that COVID-19 patients have higher total, mean, and minimum heart rates compared with those with bacterial pneumonia. Patients with severe or critical disease had more frequent atrial arrhythmias (including PAC and AF) and higher CKMB levels and mortality than those with nonsevere symptoms.

3.
Front Microbiol ; 8: 178, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28243227

RESUMEN

Rifampicin resistance (Rifr) mutations in the RNA polymerase ß subunit (rpoB) gene exhibit pleiotropic phenotypes as a result of their effects on the transcription machinery in prokaryotes. However, the differences in the effects of the mutations on the physiology and metabolism of the bacteria remain unknown. In this study, we isolated seven Rifr mutations in rpoB, including six single point mutations (H485Y, H485C, H485D, H485R, Q472R, and S490L) and one double point mutation (S490L/S617F) from vegetative cells of an endophytic strain, Bacillus velezensis CC09. Compared to the wild-type (WT) strain (CC09), the H485R and H485D mutants exhibited a higher degree of inhibition of Aspergillus niger spore germination, while the H485Y, S490L, Q472R, and S490L/S617F mutants exhibited a lower degree of inhibition due to their lower production of the antibiotic iturin A. These mutants all exhibited defective phenotypes in terms of pellicle formation, sporulation, and swarming motility. A hierarchical clustering analysis of the observed phenotypes indicated that the four mutations involving amino acid substitutions at H485 in RpoB belonged to the same cluster. In contrast, the S490L and Q472R mutations, as well as the WT strain, were in another cluster, indicating a functional connection between the mutations in B. velezensis and phenotypic changes. Our data suggest that Rifr mutations cannot only be used to study transcriptional regulation mechanisms, but can also serve as a tool to increase the production of bioactive metabolites in B. velezensis.

4.
Microbiol Res ; 196: 89-94, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28164794

RESUMEN

Bacillus velezensis CC09, which was isolated from healthy leaves of Cinnamomum camphora and previously identified as Bacillus amyloliquefaciens CC09, shows great potential as a new biocontrol agent, in control of many phytopathogenic diseases. To extend our understanding of the potential antifungal capacities, we did a whole genome analysis of strain CC09. Result shows that strain CC09 has a relatively large genome size (4.17Mb) with an average GC content of 46.1%, and 4021 predicted genes. Thirteen secondary metabolites encoding clusters have been identified within the genome of B. velezensis CC09 using genome mining technique. Data of comparative genomic analysis indicated that 3 of the clusters are conserved by all strains of B. velezensis, B. amyloliquefaciens and B. subtilis 168, 9 by B. velezensis and B. amyloliquefaciens, and 2 by all strains of B. velezensis. Another 2 clusters encoding NRPS (Non-Ribosomal Peptide Synthetases) and NRPS-TransATPKS (NRPS and trans-Acyl Transferase Polyketide Synthetases) respectively are observed only in 15 B. velezensis strains, which might lead to the synthesis of novel bioactive compounds and could be explored as antimicrobial agents in the future. These clusters endow B. velezensis CC09 with strong and broad antimicrobial activities, for example, in control of wheat powdery mildew disease. Moreover, our data further confirmed the taxonomy of strain CC09 is a member of B. velezensis rather than a strain of B. amyloliquefaciens based on core genome sequence analysis using phylogenomic approach.


Asunto(s)
Ascomicetos/efectos de los fármacos , Bacillus/genética , Bacillus/metabolismo , Agentes de Control Biológico/farmacología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Triticum/microbiología , Antifúngicos/química , Antifúngicos/farmacología , Composición de Base , Agentes de Control Biológico/metabolismo , Mapeo Cromosómico , ADN Bacteriano/análisis , ADN Bacteriano/genética , Genoma Bacteriano , Familia de Multigenes , Péptido Sintasas/genética , Filogenia , Análisis de Secuencia de ADN
5.
Chem Biol Drug Des ; 90(1): 112-118, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28032450

RESUMEN

A series of new 1-phenylsulphonyl-2-(1-methylindol-3-yl)-benzimidazole derivatives were designed, synthesized and evaluated as potential inhibitors of tubulin polymerization and anthropic cancer cell lines. Among them, compound 33 displayed the most potent tubulin polymerization inhibitory activity in vitro (IC50  = 1.41 µM) and strong antiproliferative activities against A549, Hela, HepG2 and MCF-7 cell lines in vitro with GI50 value of 1.6, 2.7, 2.9 and 4.3 µM, respectively, comparable with the positive control colchicine (GI50 value of 4.1, 7.2, 9.5 and 14.5 µM, respectively) and CA-4 (GI50 value of 2.2, 4.3, 6.4 and 11.4 µM, respectively). Simultaneously, we evaluated that compound 33 could effectively induce apoptosis of A549 associated with G2/M phase cell cycle arrest. Immunofluorescence microscopy also clearly indicated compound 33 a potent antimicrotubule agent. Docking simulation showed that compound 33 could bind tightly with the colchicine-binding site and act as a tubulin inhibitor. Three-dimensional-QSAR model was also built to provide more pharmacophore understanding that could be used to design new agents with more potent tubulin assembling inhibitory activity in the future.


Asunto(s)
Bencimidazoles/química , Moduladores de Tubulina/síntesis química , Tubulina (Proteína)/metabolismo , Células A549 , Animales , Bencimidazoles/síntesis química , Bencimidazoles/farmacología , Sitios de Unión , Puntos de Control del Ciclo Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Colchicina/química , Colchicina/metabolismo , Colchicina/farmacología , Cristalografía por Rayos X , Células HeLa , Células Hep G2 , Humanos , Células MCF-7 , Ratones , Simulación del Acoplamiento Molecular , Estructura Terciaria de Proteína , Relación Estructura-Actividad Cuantitativa , Tubulina (Proteína)/química , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA