RESUMEN
We reconstruct the cosmological background evolution under the scenario of dynamical dark energy through the Gaussian process approach, using the latest Dark Energy Spectroscopic Instrument (DESI) baryon acoustic oscillations (BAO) combined with other observations. Our results reveal that the reconstructed dark-energy equation-of-state (EoS) parameter w(z) exhibits the so-called quintom-B behavior, crossing -1 from phantom to quintessence regime as the universe expands. We investigate under what situation this type of evolution could be achieved from the perspectives of field theories and modified gravity. In particular, we reconstruct the corresponding actions for f(R),f(T), and f(Q) gravity, respectively. We explicitly show that, certain modified gravity can exhibit the quintom dynamics and fit the recent DESI data efficiently, and for all cases the quadratic deviation from the ΛCDM scenario is mildly favored.
RESUMEN
We report new experimental results on exotic spin-spin-velocity-dependent interactions between electron spins. We designed an elaborate setup that is equipped with two nitrogen-vacancy (NV) ensembles in diamonds. One of the NV ensembles serves as the spin source, while the other functions as the spin sensor. By coherently manipulating the quantum states of two NV ensembles and their relative velocity at the micrometer scale, we are able to scrutinize exotic spin-spin-velocity-dependent interactions at short force ranges. For a T-violating interaction, V_{6}, new limits on the corresponding coupling coefficient, f_{6}, have been established for the force range shorter than 1 cm. For a P,T-violating interaction, V_{14}, new constraints on the corresponding coupling coefficient, f_{14}, have been obtained for the force range shorter than 1 km.
RESUMEN
Recently, the NANOGrav, PPTA, EPTA, and CPTA Collaborations independently reported their evidence of the Stochastic Gravitational Waves Background (SGWB). While the inferred gravitational-wave background amplitude and spectrum are consistent with astrophysical expectations for a signal from the population of supermassive black-hole binaries (SMBHBs), the search for new physics remains plausible in this observational window. In this work, we explore the possibility of explaining such a signal by the scalar-induced gravitational waves (IGWs) in the very early universe. We use a parameterized broken power-law function as a general description of the energy spectrum of the SGWB and fit it to the new results of NANOGrav, PPTA and EPTA. We find that this approach can put constraints on the parameters of IGW energy spectrum and further yield restrictions on various inflation models that may produce primordial black holes (PBHs) in the early universe, which is also expected to be examined by the forthcoming space-based GW experiments.
RESUMEN
Searching for exotic interactions provides a path for exploring new particles beyond the standard model. Here, we used an ensemble-NV-diamond magnetometer to search for an exotic spin- and velocity-dependent interaction between polarized electron spins and unpolarized nucleons at the micrometer scale. A thin layer of nitrogen-vacancy electronic spin ensemble in diamond is utilized as both the solid-state spin quantum sensor and the polarized electron source, and a vibrating lead sphere serves as the moving unpolarized nucleon source. The exotic interaction is searched by detecting the possible effective magnetic field induced by the moving unpolarized nucleon source using the ensemble-NV-diamond magnetometer. Our result establishes new bounds for the coupling parameter f_{â¥} within the force range from 5 to 400 µm. The upper limit of the coupling parameter at 100 µm is |f_{â¥}|≤1.1×10^{-11}, which is 3 orders of magnitude more stringent than the previous constraint. This result shows that NV ensemble can be a promising platform to search for hypothetical particles beyond the standard model.
RESUMEN
Laboratory search of exotic interactions is crucial for exploring physics beyond the standard model. We report new experimental constraints on two exotic spin-dependent interactions at the micrometer scale based on ensembles of nitrogen-vacancy (NV) centers in diamond. A thin layer of NV electronic spin ensembles is synthesized as the solid-state spin quantum sensor, and a lead sphere is taken as the interacting nucleon source. Our result establishes new bounds for two types of exotic spin interactions at the micrometer scale. For an exotic parity-odd spin- and velocity-dependent interaction, improved bounds are set within the force range from 5 to 500 µm. The upper limit of the corresponding coupling constant [Formula: see text] at 330 µm is more than 1000-fold more stringent than the previous constraint. For the P, T-violating scalar-pseudoscalar nucleon-electron interaction, improved constraints are established within the force range from 6 to 45 µm. The limit of the corresponding coupling constant [Formula: see text] is improved by more than one order of magnitude at 30 µm. This work demonstrates that a solid-state NV ensemble can be a powerful platform for probing exotic spin-dependent interactions.
RESUMEN
Professor Henry Tye () is a world-renowned expert in theoretical particle physics, string theory and cosmology. He was recently the IAS Professor at the Jockey Club Institute for Advanced Study (IAS) and the Hong Kong University of Science and Technology (HKUST), and is the Horace White Professor of Physics (Emeritus) at Cornell University. He has a lot of experience in research status in both China and the United States. Recently, NSR invited Professor Yi-Fu Cai () from the University of Science and Technology of China (USTC) to interview Prof. Tye on his personal views on the future of theoretical physics, his own experience, and his advice to young researchers.
RESUMEN
Improved laboratory limits on the exotic spin- and velocity-dependent interaction at the micrometer scale are established with a single electron spin quantum sensor. The single electron spin of a near-surface nitrogen-vacancy center in diamond is used as the quantum sensor, and a fused-silica half-sphere lens is taken as the source of the moving nucleons. The exotic interaction between the polarized electron and the moving nucleon source is explored by measuring the possible magnetic field sensed by the electron spin quantum sensor. Our experiment sets improved constraints on the exotic spin- and velocity-dependent interaction within the force range from 1.4 to 330 µm. The upper limit of the coupling g_{A}^{e}g_{V}^{N} at 200 µm is |g_{A}^{e}g_{V}^{N}|≤5.3×10^{-19}, significantly improving the current laboratory limit by more than 4 orders of magnitude.
RESUMEN
We propose a novel mechanism to test time variation of the propagation speed of gravitational waves (GWs) in light of GWs astronomy. As the stochastic GWs experience the whole history of cosmic expansion, they encode potential observational evidence of such variation. We report that, one feature of a varying GWs speed is that the energy spectrum of GWs will present resonantly enhanced peaks if the GWs speed oscillates in time at high-energy scales. Such oscillatory behavior arises in a wide class of modified gravity theories. The amplitude of these peaks can be at reach by current and forthcoming GWs instruments, hence making the underlying theories falsifiable. This mechanism reveals that probing the variation of GWs speed can be a promising way to search for new physics beyond general relativity.
RESUMEN
We propose a novel mechanism for enhancing primordial gravitational waves without significantly affecting the curvature perturbations produced during inflation. This is achieved due to nonlinear sourcing of resonantly amplified scalar field fluctuations. Our result is an explicit scale-dependent counterexample of the famous Lyth bound, which opens up a promising perspective of producing detectable inflationary tensor modes with low-scale inflation and a sub-Planckian field excursion. We explicitly demonstrate the testability of our mechanism with upcoming cosmic microwave background B-mode observations.
RESUMEN
A new laboratory bound on the axial-vector mediated interaction between electron spins at micrometer scale is established with single nitrogen-vacancy (NV) centers in diamond. A single crystal of p-terphenyl doped pentacene-d_{14} under laser pumping provides the source of polarized electron spins. Based on the measurement of polarization signal via nitrogen-vacancy centers, we set a constraint for the exotic electron-electron coupling g_{A}^{e}g_{A}^{e}, within the force range from 10 to 900 µm. The obtained upper bound of the coupling at 500 µm is |g_{A}^{e}g_{A}^{e}/4πâc|≤1.8×10^{-19}, which is one order of magnitude more stringent than a previous experiment. Our result shows that the NV center can be a promising platform for searching for new particles predicted by theories beyond the standard model.
RESUMEN
We report on a novel phenomenon of the resonance effect of primordial density perturbations arisen from a sound speed parameter with an oscillatory behavior, which can generically lead to the formation of primordial black holes in the early Universe. For a general inflaton field, it can seed primordial density fluctuations, and their propagation is governed by a parameter of sound speed square. Once, if this parameter achieves an oscillatory feature for a while during inflation, a significant nonperturbative resonance effect on the inflaton field fluctuations takes place around a critical length scale, which results in significant peaks in the primordial power spectrum. By virtue of this robust mechanism, primordial black holes with specific mass function can be produced with a sufficient abundance for dark matter in sizable parameter ranges.
RESUMEN
Searching for new particles beyond the standard model is crucial for understanding several fundamental conundrums in physics and astrophysics. Several hypothetical particles can mediate exotic spin-dependent interactions between ordinary fermions, which enable laboratory searches via the detection of the interactions. Most laboratory searches utilize a macroscopic source and detector, thus allowing the detection of interactions with submillimeter force range and above. It remains a challenge to detect the interactions at shorter force ranges. Here we propose and demonstrate that a near-surface nitrogen-vacancy center in diamond can be utilized as a quantum sensor to detect the monopole-dipole interaction between an electron spin and nucleons. Our result sets a constraint for the electron-nucleon coupling, [Formula: see text], with the force range 0.1-23 µm. The obtained upper bound of the coupling at 20 µm is [Formula: see text] < 6.24 × 10-15.
RESUMEN
Over recent decades, the role of torsion in gravity has been extensively investigated along the main direction of bringing gravity closer to its gauge formulation and incorporating spin in a geometric description. Here we review various torsional constructions, from teleparallel, to Einstein-Cartan, and metric-affine gauge theories, resulting in extending torsional gravity in the paradigm of f (T) gravity, where f (T) is an arbitrary function of the torsion scalar. Based on this theory, we further review the corresponding cosmological and astrophysical applications. In particular, we study cosmological solutions arising from f (T) gravity, both at the background and perturbation levels, in different eras along the cosmic expansion. The f (T) gravity construction can provide a theoretical interpretation of the late-time universe acceleration, alternative to a cosmological constant, and it can easily accommodate with the regular thermal expanding history including the radiation and cold dark matter dominated phases. Furthermore, if one traces back to very early times, for a certain class of f (T) models, a sufficiently long period of inflation can be achieved and hence can be investigated by cosmic microwave background observations-or, alternatively, the Big Bang singularity can be avoided at even earlier moments due to the appearance of non-singular bounces. Various observational constraints, especially the bounds coming from the large-scale structure data in the case of f (T) cosmology, as well as the behavior of gravitational waves, are described in detail. Moreover, the spherically symmetric and black hole solutions of the theory are reviewed. Additionally, we discuss various extensions of the f (T) paradigm. Finally, we consider the relation with other modified gravitational theories, such as those based on curvature, like f (R) gravity, trying to illuminate the subject of which formulation, or combination of formulations, might be more suitable for quantization ventures and cosmological applications.
RESUMEN
The BICEP2 Collaboration reports a detection of primordial cosmic microwave background (CMB) B mode with a tensor-to-scalar ratio r = 0.20(-0.05)(+0.07) (68% C.L.). However, this result disagrees with the recent Planck limit r < 0.11 (95% C.L.) on constraining inflation models. In this Letter we consider an inflationary cosmology with a preceding nonsingular bounce, which gives rise to observable signatures on primordial perturbations. One interesting phenomenon is that both the primordial scalar and tensor modes can have a step feature on their power spectra, which nicely cancels the tensor excess power on the CMB temperature power spectrum. By performing a global analysis, we obtain the 68% C.L. constraints on the parameters of the model from the Planck+WP and BICEP2 data together: the jump scale log(10)(k(B)/Mpc(-1)) = -2.4 ± 0.2 and the spectrum amplitude ratio of bounce to inflation r(B) ≡ P(m)/A(s) = 0.71 ± 0.09. Our result reveals that the bounce inflation scenario can simultaneously explain the Planck and BICEP2 observations better than the standard cold dark matter model with a cosmological constant, and can be verified by future CMB polarization measurements.