Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Nanomaterials (Basel) ; 12(14)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35889625

RESUMEN

One of the grand challenges of new generation Condensed Matter physicists is the development of novel devices enabling the control of sound propagation at terahertz frequency. Indeed, phonon excitations in this frequency window are the leading conveyor of heat transfer in insulators. Their manipulation is thus critical to implementing heat management based on the structural design. To explore the possibility of controlling the damping of sound waves, we used high spectral contrast Inelastic X-ray Scattering (IXS) to comparatively study terahertz acoustic damping in a dilute suspension of 50 nm nanospheres in glycerol and on pure glycerol. Bayesian inference-based modeling of measured spectra indicates that, at sufficiently large distances, the spectral contribution of collective modes in the glycerol suspension becomes barely detectable due to the enhanced damping, the weakening, and the slight softening of the dominant acoustic mode.

3.
Nano Lett ; 21(17): 7419-7425, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34314183

RESUMEN

Many-body localization (MBL) has attracted significant attention because of its immunity to thermalization, role in logarithmic entanglement entropy growth, and opportunities to reach exotic quantum orders. However, experimental realization of MBL in solid-state systems has remained challenging. Here, we report evidence of a possible phonon MBL phase in disordered GaAs/AlAs superlattices. Through grazing-incidence inelastic X-ray scattering, we observe a strong deviation of the phonon population from equilibrium in samples doped with ErAs nanodots at low temperature, signaling a departure from thermalization. This behavior occurs within finite phonon energy and wavevector windows, suggesting a localization-thermalization crossover. We support our observation by proposing a theoretical model for the effective phonon Hamiltonian in disordered superlattices, and showing that it can be mapped exactly to a disordered 1D Bose-Hubbard model with a known MBL phase. Our work provides momentum-resolved experimental evidence of phonon localization, extending the scope of MBL to disordered solid-state systems.


Asunto(s)
Modelos Teóricos , Fonones
4.
Phys Rev E ; 102(2-1): 022601, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32942392

RESUMEN

We used inelastic x-ray scattering to gain insight into the complex terahertz dynamics of a diluted Au-nanoparticle suspension in glycerol. We observe that, albeit sparse, Au nanoparticles leave clear signatures on the dynamic response of the system, the main one being an additional mode propagating at the nanoparticle-glycerol interface. A Bayesian inferential analysis of the line shape reveals that such a mode, at variance with conventional acoustic modes, keeps a hydrodynamiclike behavior well beyond the continuous limit and down to subnanometer distances.

5.
Nanomaterials (Basel) ; 10(5)2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32365679

RESUMEN

We used the high-resolution Inelastic X-ray Scattering beamline of the Advanced Photon Source at Argonne National Laboratory to measure the terahertz spectrum of pure water and a dilute aqueous suspension of 15 nm diameter spherical Au nanoparticles (Au-NPs). We observe that, despite their sparse volume concentration of about 0.5%, the immersed NPs strongly influence the collective molecular dynamics of the hosting liquid. We investigate this effect through a Bayesian inference analysis of the spectral lineshape, which elucidates how terahertz transport properties of water change upon Au-NP immersion. In particular, we observe a nearly complete disappearance of the longitudinal acoustic mode and a mildly decreased ability to support shear wave propagation.

6.
Langmuir ; 36(18): 4887-4896, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32259453

RESUMEN

In biological membranes, lipid rafts are now thought to be transient and nanoscopic. However, the mechanism responsible for these nanoscopic assemblies remains poorly understood, even in the case of model membranes. As a result, it has proven extremely challenging to probe the physicochemical properties of lipid rafts at the molecular level. Here, we use all-atom molecular dynamics (MD) simulations and inelastic X-ray scattering (IXS), an intrinsically nanoscale technique, to directly probe the energy transfer and collective short-wavelength dynamics (phonons) of biologically relevant model membranes. We show that the nanoscale propagation of stress in lipid rafts takes place in the form of collective motions made up of longitudinal (compression waves) and transverse (shear waves) molecular vibrations. Importantly, we provide a molecular picture for the so-called van der Waals mediated "force from lipid" [Anishkin, A. et al. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 7898], a key parameter for the ionic channel mechano-transduction and the mechanism for the lipid transfer of molecular level stress [Aponte-Santamaría, C. et al. J. Am. Chem. Soc. 2017, 139, 13588]. Specifically, we describe how lipid rafts are formed and maintained through the propagation of molecular stress, lipid raft rattling dynamics, and a relaxation process. Eventually, the rafts dissipate through the self-diffusion of lipids making up the rafts. We also show that the molecular stress and viscoelastic properties of transient lipid rafts can be modulated through the use of hydrophobic biomolecules such as melatonin and tryptophan. Ultimately, the herein proposed mechanism describing the molecular interactions for the formation and dissolution of lipid rafts may offer insights as to how lipid rafts enable biological function.


Asunto(s)
Microdominios de Membrana , Simulación de Dinámica Molecular , Membrana Celular , Difusión , Lípidos
7.
Proc Natl Acad Sci U S A ; 117(9): 4749-4757, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32071249

RESUMEN

Biological membranes exhibit a great deal of compositional and phase heterogeneity due to hundreds of chemically distinct components. As a result, phase separation processes in cell membranes are extremely difficult to study, especially at the molecular level. It is currently believed that the lateral membrane heterogeneity and the formation of domains, or rafts, are driven by lipid-lipid and lipid-protein interactions. Nevertheless, the underlying mechanisms regulating membrane heterogeneity remain poorly understood. In the present work, we combine inelastic X-ray scattering with molecular dynamics simulations to provide direct evidence for the existence of strongly coupled transient lipid pairs. These lipid pairs manifest themselves experimentally through optical vibrational (a.k.a. phononic) modes observed in binary (1,2-dipalmitoyl-sn-glycero-3-phosphocholine [DPPC]-cholesterol) and ternary (DPPC-1,2-dioleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-glycero-3-phosphocholine [DOPC/POPC]-cholesterol) systems. The existence of a phononic gap in these vibrational modes is a direct result of the finite size of patches formed by these lipid pairs. The observation of lipid pairs provides a spatial (subnanometer) and temporal (subnanosecond) window into the lipid-lipid interactions in complex mixtures of saturated/unsaturated lipids and cholesterol. Our findings represent a step toward understanding the lateral organization and dynamics of membrane domains using a well-validated probe with a high spatial and temporal resolution.


Asunto(s)
Membrana Celular/química , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Lípidos de la Membrana/química , Membrana Celular/metabolismo , Fenómenos Químicos , Colesterol/química , Fonones
8.
ACS Nano ; 12(9): 8867-8874, 2018 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-30052427

RESUMEN

The control of phonon propagation in nanoparticle arrays is one of the frontiers of nanotechnology, potentially enabling the discovery of materials with unknown functionalities for potential innovative applications. The exploration of the terahertz window appears quite promising as phonons in this range are the leading carriers of heat transport in insulators and their control is the key to implement devices for heat flow management. Unfortunately, this scientific field is still in its infancy, and even a basic topic such as the influence of floating nanoparticles on the terahertz phonon propagation of a colloidal suspension still eludes a firm answer. Shedding some light on this topic is the main motivation of the present work, which focuses an inelastic X-ray scattering (IXS) measurements on a dilute suspension of Au nanospheres in water. Measured spectra showed a nontrivial shape displaying multiple inelastic features that, based on a Bayesian inference analysis, we assign to phonon modes propagating throughout the nanoparticle interior. Surprisingly, the spectra bear no evidence of propagating modes, which are known to dominate the spectrum of pure water, owing to the scattering that these modes suffer from the sparse nanoparticles in suspension. In perspective, this finding may inspire simple routes to manipulate high-frequency acoustic propagation in hybrid-liquid and solid-materials.

9.
Biochim Biophys Acta Biomembr ; 1860(11): 2446-2455, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30031781

RESUMEN

It has been widely accepted that the thermally excited motions of the molecules in a cell membrane is the prerequisite for a cell to carry its biological functions. On the other hand, the detailed mapping of the ultrafast picosecond single-molecule and the collective lipid dynamics in a cell membrane remains rather elusive. Here, we report all-atom molecular dynamics simulations of a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine bilayer over a wide range of temperature. We elucidate a molecular mechanism underlying the lateral lipid diffusion in a cell membrane across the gel, rippled, and liquid phases using an analysis of the longitudinal and transverse current correlation spectra, the velocity auto-correlation functions, and the molecules mean square displacements. The molecular mechanism is based on the anomalous ultrafast vibrational properties of lipid molecules at the viscous-to-elastic crossover. The macroscopic lipid diffusion coefficients predicted by the proposed diffusion model are in a good agreement with experimentally observed values. Furthermore, we unveil the role of water confined at the water-lipid interface in triggering collective vibrations in a lipid bilayer.


Asunto(s)
Membrana Dobles de Lípidos/química , 1,2-Dipalmitoilfosfatidilcolina/química , Difusión , Membrana Dobles de Lípidos/metabolismo , Simulación de Dinámica Molecular , Temperatura
10.
J Phys Chem Lett ; 9(15): 4182-4188, 2018 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-29979596

RESUMEN

One challenge in studying high-temperature superconductivity (HTSC) stems from a lack of direct experimental evidence linking lattice inhomogeneity and superconductivity. Here, we apply synchrotron hard X-ray nanoimaging and small-angle scattering to reveal a novel micron-scaled ribbon phase in optimally doped Bi2Sr2CaCu2O8+δ (Bi-2212, with δ = 0.1). The morphology of the ribbon-like phase evolves simultaneously with the dome-shaped TC behavior under pressure. X-ray absorption studies show that the increasing of TC is associated with oxygen-hole redistribution in the CuO2 plan, while TC starts to decrease with pressure when oxygen holes become immobile. Additional X-ray irradiation experiments reveal that nanoscaled short-range ordering of oxygen vacancies could further lower TC, which indicates that the optimal TC is affected not only by an optimal morphology of the ribbon phase, but also an optimal distribution of oxygen vacancies. Our studies thereby provide for the first time compelling experimental evidence correlating the TC with micron to nanoscale inhomogeneity.

11.
Nano Lett ; 17(6): 3870-3876, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28548861

RESUMEN

The investigation of phononic collective excitations in soft matter systems at the molecular scale has always been challenging due to limitations of experimental techniques in resolving low-energy modes. Recent advances in inelastic X-ray scattering (IXS) enabled the study of such systems with unprecedented spectral contrast at meV excitation energies. In particular, it has become possible to shed light on the low-energy collective motions in materials whose morphology and phase behavior can easily be manipulated, such as mesogenic systems. The understanding of collective mode behavior with a Q-dependence is the key to implement heat management based on the control of a sample structure. The latter has great potential for a large number of energy-inspired innovations. As a first step toward this goal, we carried out high contrast IXS measurements on a liquid crystal sample, D7AOB, which exhibits solid-like dynamic features, such as the coexistence of longitudinal and transverse phononic modes. For the first time, we found that these terahertz phononic excitations persist in the crystal, smectic A, and isotropic phases. Furthermore, the intermediate smectic A phase is shown to support a van der Waals-mediated nonhydrodynamic mode with an optical-like phononic behavior. The tunability of the collective excitations at nanometer-terahertz scales via selection of the sample mesogenic phase represents a new opportunity to manipulate optomechanical properties of soft metamaterials.

13.
Nat Commun ; 7: 11575, 2016 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-27175859

RESUMEN

The passive transport of molecules through a cell membrane relies on thermal motions of the lipids. However, the nature of transmembrane transport and the precise mechanism remain elusive and call for a comprehensive study of phonon excitations. Here we report a high resolution inelastic X-ray scattering study of the in-plane phonon excitations in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine above and below the main transition temperature. In the gel phase, for the first time, we observe low-frequency transverse modes, which exhibit a phonon gap when the lipid transitions into the fluid phase. We argue that the phonon gap signifies the formation of short-lived nanometre-scale lipid clusters and transient pores, which facilitate the passive molecular transport across the bilayer plane. Our findings suggest that the phononic motion of the hydrocarbon tails provides an effective mechanism of passive transport, and illustrate the importance of the collective dynamics of biomembranes.


Asunto(s)
Membrana Dobles de Lípidos/metabolismo , Nanopartículas/química , Fonones , Transporte Biológico , Dimiristoilfosfatidilcolina/química , Rayos X
14.
Sci Rep ; 6: 19469, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26763899

RESUMEN

In this paper we present inelastic X-ray scattering experiments in a diamond anvil cell and molecular dynamic simulations to investigate the behavior of phononic excitations in liquid Ar. The spectra calculated using molecular dynamics were found to be in a good agreement with the experimental data. Furthermore, we observe that, upon temperature increases, a low-frequency transverse phononic gap emerges while high-frequency propagating modes become evanescent at the THz scale. The effect of strong localization of a longitudinal phononic mode in the supercritical phase is observed for the first time. The evidence for the high-frequency transverse phononic gap due to the transition from an oscillatory to a ballistic dynamic regimes of motion is presented and supported by molecular dynamics simulations. This transition takes place across the Frenkel line thermodynamic limit which demarcates compressed liquid and non-compressed fluid domains on the phase diagram and is supported by calculations within the Green-Kubo phenomenological formalism. These results are crucial to advance the development of novel terahertz thermal devices, phononic lenses, mirrors, and other THz metamaterials.

15.
Opt Express ; 23(24): 31607-18, 2015 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-26698784

RESUMEN

A further development of a focusing monochromator concept for X-ray energy resolution of 0.1 meV and below is presented. Theoretical analysis of several optical layouts based on this concept was supported by numerical simulations performed in the "Synchrotron Radiation Workshop" software package using the physical-optics approach and careful modeling of partially-coherent synchrotron (undulator) radiation. Along with the energy resolution, the spectral shape of the energy resolution function was investigated. It was shown that under certain conditions the decay of the resolution function tails can be faster than that of the Gaussian function.

16.
Sci Rep ; 5: 15850, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26537668

RESUMEN

Supercritical fluids play a significant role in elucidating fundamental aspects of liquid matter under extreme conditions. They have been extensively studied at pressures and temperatures relevant to various industrial applications. However, much less is known about the structural behaviour of supercritical fluids and no structural crossovers have been observed in static compression experiments in any temperature and pressure ranges beyond the critical point. The structure of supercritical state is currently perceived to be uniform everywhere on the pressure-temperature phase diagram, and to change only in a monotonic way even moving around the critical point, not only along isotherms or isobars. Conversely, we observe structural crossovers for the first time in a deeply supercritical sample through diffraction measurements in a diamond anvil cell and discover a new thermodynamic boundary on the pressure-temperature diagram. We explain the existence of these crossovers in the framework of the phonon theory of liquids using molecular dynamics simulations. The obtained results are of prime importance since they imply a global reconsideration of the mere essence of the supercritical phase. Furthermore, this discovery may pave the way to new unexpected applications and to the exploration of exotic behaviour of confined fluids relevant to geo- and planetary sciences.

17.
Sci Rep ; 5: 14996, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26459927

RESUMEN

The THz spectrum of density fluctuations, S(Q, ω), of vitreous GeO2 at ambient temperature was measured by inelastic x-ray scattering from ambient pressure up to pressures well beyond that of the known α-quartz to rutile polyamorphic (PA) transition. We observe significant differences in the spectral shape measured below and above the PA transition, in particular, in the 30-80 meV range. Guided by first-principle lattice dynamics calculations, we interpret the changes in the phonon dispersion as the evolution from a quartz-like to a rutile-like coordination. Notably, such a crossover is accompanied by a cusp-like behavior in the pressure dependence of the elastic response of the system. Overall, the presented results highlight the complex fingerprint of PA phenomena on the high-frequency phonon dispersion.

18.
J Phys Chem Lett ; 6(15): 3048-53, 2015 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-26267201

RESUMEN

In this work, we report on inelastic X-ray scattering experiments combined with the molecular dynamics simulations on deeply supercritical Ar. The presented results unveil the mechanism and regimes of sound propagation in the liquid matter and provide compelling evidence for the adiabatic-to-isothermal longitudinal sound propagation transition. We introduce a Hamiltonian predicting low-frequency transverse sound propagation gaps, which is confirmed by experimental findings and molecular dynamics calculations. As a result, a universal link is established between the positive sound dispersion (PSD) phenomenon and the origin of transverse sound propagation revealing the viscous-to-elastic crossover in liquids. The PSD and transverse phononic excitations evolve consistently with theoretical predictions. Both can be considered as a universal fingerprint of the dynamic response of a liquid, which is also observable in a subdomain of supercritical phase. The simultaneous disappearance of both these effects at elevated temperatures is a manifestation of the Frenkel line. We expect that these findings will advance the current understanding of fluids under extreme thermodynamic conditions.

19.
J Synchrotron Radiat ; 21(Pt 3): 473-8, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24763634

RESUMEN

The L-shaped laterally graded multilayer mirror is a vital part of the ultrahigh-energy and momentum-resolution inelastic X-ray scattering spectrometer at the National Synchrotron Light Source II. This mirror was designed and implemented as a two-dimensional collimating optic for the analyzer system. Its performance was characterized using a secondary large-divergence source at the 30-ID beamline of the Advanced Photon Source, which yielded an integrated reflectivity of 47% and a collimated beam divergence of 78 µrad with a source size of 10 µm. Numerical simulations of the mirror performance in tandem with the analyzer crystal optics provided details on the acceptance sample volume in forward scattering and defined the technical requirements on the mirror stability and positioning precision. It was shown that the mirror spatial and angular stability must be in the range <8.4 µm and <21.4 µrad, respectively, for reliable operation of the analyzer.

20.
Proc Natl Acad Sci U S A ; 110(46): 18402-6, 2013 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-24167283

RESUMEN

Knowledge of the high-pressure behavior of carbon dioxide (CO2), an important planetary material found in Venus, Earth, and Mars, is vital to the study of the evolution and dynamics of the planetary interiors as well as to the fundamental understanding of the C-O bonding and interaction between the molecules. Recent studies have revealed a number of crystalline polymorphs (CO2-I to -VII) and an amorphous phase under high pressure-temperature conditions. Nevertheless, the reported phase stability field and transition pressures at room temperature are poorly defined, especially for the amorphous phase. Here we shed light on the successive pressure-induced local structural changes and the molecular-to-nonmolecular transition of CO2 at room temperature by performing an in situ study of the local electronic structure using X-ray Raman scattering, aided by first-principle exciton calculations. We show that the transition from CO2-I to CO2-III was initiated at around 7.4 GPa, and completed at about 17 GPa. The present study also shows that at ~37 GPa, molecular CO2 starts to polymerize to an extended structure with fourfold coordinated carbon and minor CO3 and CO-like species. The observed pressure is more than 10 GPa below previously reported. The disappearance of the minority species at 63(± 3) GPa suggests that a previously unknown phase transition within the nonmolecular phase of CO2 has occurred.


Asunto(s)
Dióxido de Carbono/química , Conformación Molecular , Presión , Espectrometría Raman , Espectroscopía de Absorción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...