Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Stroke ; 55(3): 725-734, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38406851

RESUMEN

BACKGROUND: Remote secondary neurodegeneration is associated with poststroke cognitive impairment (PSCI). Dl-3-n-butylphthalide (NBP) improves PSCI clinically. However, whether it ameliorates PSCI by alleviating secondary neurodegeneration remains uncertain. Nonhuman primates provide more relevant models than rodents for human stroke and PSCI. This study investigated the effects of NBP on PSCI and secondary neurodegeneration in cynomolgus monkeys after permanent left middle cerebral artery occlusion (MCAO). METHODS: Thirteen adult male cynomolgus monkeys were randomly assigned to sham (n=4), MCAO+placebo (n=5), and MCAO+NBP groups (n=4). The MCAO+placebo and MCAO+NBP groups received saline and NBP injections intravenously, respectively, starting at 6-hour postsurgery for 2 weeks, followed by soybean oil and NBP orally, respectively, for 10 weeks after MCAO. Infarct size was assessed at week 4 by magnetic resonance imaging. Working memory and executive function were evaluated dynamically using the delayed response task and object retrieval detour task, respectively. Neuron loss, glia proliferation, and neuroinflammation in the ipsilateral dorsal lateral prefrontal cortex, thalamus, and hippocampus were analyzed by immunostaining 12 weeks after MCAO. RESULTS: Infarcts were located in the left middle cerebral artery region, apart from the ipsilateral dorsal lateral prefrontal cortex, thalamus, or hippocampus, with no significant difference between the MCAO+placebo and MCAO+NBP group. Higher success in delayed response task was achieved at weeks 4, 8, and 12 after NBP compared with placebo treatments (P<0.05), but not in the object retrieval detour task (all P>0.05). More neurons and less microglia, astrocytes, CD68-positive microglia, tumor necrosis factor-α, and inducible NO synthase were observed in the ipsilateral dorsal lateral prefrontal cortex and thalamus after 12 weeks of NBP treatment (P<0.05), but not in the hippocampus (P>0.05). CONCLUSIONS: Our findings indicate that NBP improves working memory by alleviating remote secondary neurodegeneration and neuroinflammation in the ipsilateral dorsal lateral prefrontal cortex and thalamus after MCAO in cynomolgus monkeys.


Asunto(s)
Benzofuranos , Lesiones Encefálicas , Neoplasias Encefálicas , Fármacos Neuroprotectores , Accidente Cerebrovascular , Humanos , Animales , Masculino , Macaca fascicularis , Memoria a Corto Plazo , Enfermedades Neuroinflamatorias , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/tratamiento farmacológico , Lesiones Encefálicas/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Hipocampo/patología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
2.
Mol Neurobiol ; 60(7): 3633-3649, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36905568

RESUMEN

Neuronal ferroptosis plays an important role in secondary brain injuries after intracerebral hemorrhage (ICH). Edaravone (Eda) is a promising free radical scavenger that inhibits ferroptosis in neurological diseases. However, its protective effects and underlying mechanisms in ameliorating post-ICH ferroptosis remain unclear. We employed a network pharmacology approach to determine the core targets of Eda against ICH. Forty-two rats were subjected to successful striatal autologous whole blood injection (n=28) or sham operation (n=14). The 28 blood-injected rats were randomly assigned to either the Eda or vehicle group (n=14) for immediate administration and then for 3 consecutive days. Hemin-induced HT22 cells were used for in vitro studies. The effects of Eda in ICH on ferroptosis and the MEK/ERK pathway were investigated in vivo and in vitro. Network pharmacology-based analysis revealed that candidate targets of Eda-treated ICH might be related to ferroptosis; among which prostaglandin G/H synthase 2 (PTGS2) was a ferroptosis marker. In vivo experiments showed that Eda alleviated sensorimotor deficits and decreased PTGS2 expression (all p<0.05) after ICH. Eda rescued neuron pathological changes after ICH (increased NeuN+ cells and decreased FJC+ cells, all p<0.01). In vitro experiments showed that Eda reduced intracellular reactive oxygen species and reversed mitochondria damage. Eda repressed ferroptosis by decreasing malondialdehyde and iron deposition and by influencing ferroptosis-related protein expression (all p<0.05) in ICH rats and hemin-induced HT22 cells. Mechanically, Eda significantly suppressed phosphorylated-MEK and phosphorylated-ERK1/2 expression. These results indicate that Eda has protective effects on ICH injury through ferroptosis and MEK/ERK pathway suppression.


Asunto(s)
Lesiones Encefálicas , Hemina , Ratas , Animales , Edaravona/farmacología , Edaravona/uso terapéutico , Ciclooxigenasa 2 , Hemina/farmacología , Hemina/uso terapéutico , Farmacología en Red , Hemorragia Cerebral/complicaciones , Hemorragia Cerebral/tratamiento farmacológico , Hemorragia Cerebral/metabolismo , Lesiones Encefálicas/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos
3.
Vaccines (Basel) ; 9(8)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34452064

RESUMEN

Background: Nervous and muscular adverse events (NMAEs) have garnered considerable attention after the vaccination against coronavirus disease (COVID-19). However, the incidences of NMAEs remain unclear. We aimed to calculate the pooled event rate of NMAEs after COVID-19 vaccination. Methods: A systematic review and meta-analysis of clinical trials on the incidences of NMAEs after COVID-19 vaccination was conducted. The PubMed, Medline, Embase, Cochrane Library, and Chinese National Knowledge Infrastructure databases were searched from inception to 2 June 2021. Two independent reviewers selected the study and extracted the data. Categorical variables were analyzed using Pearson's chi-square test. The pooled odds ratio (OR) with the corresponding 95% confidence intervals (CIs) were estimated and generated with random or fixed effects models. The protocol of the present study was registered on PROSPERO (CRD42021240450). Results: In 15 phase 1/2 trials, NMAEs occurred in 29.2% vs. 21.6% (p < 0.001) vaccinated participants and controls. Headache and myalgia accounted for 98.2% and 97.7%, and their incidences were 16.4% vs. 13.9% (OR = 1.97, 95% CI = 1.28-3.06, p = 0.002) and 16.0% vs. 7.9% (OR = 3.31, 95% CI = 2.05-5.35, p < 0.001) in the vaccine and control groups, respectively. Headache and myalgia were more frequent in the newly licensed vaccines (OR = 1.97, 95% CI = 1.28-3.06, p = 0.02 and OR = 3.31, 95% CI = 2.05-5.35, p < 0.001) and younger adults (OR = 1.40, 95% CI = 1.12-1.75, p = 0.003 and OR = 1.54, 95% CI = 1.20-1.96, p < 0.001). In four open-label trials, the incidences of headache, myalgia, and unsolicited NMAEs were 38.7%, 27.4%, and 1.5%. Following vaccination in phase 3 trials, headache and myalgia were still common with a rate of 29.5% and 19.2%, although the unsolicited NMAEs with incidence rates of ≤ 0.7% were not different from the control group in each study. Conclusions: Following the vaccination, NMAEs are common of which headache and myalgia comprised a considerable measure, although life-threatening unsolicited events are rare. NMAEs should be continuously monitored during the ongoing global COVID-19 vaccination program.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...