Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39125733

RESUMEN

Leveraging the fluorescence enhancement effect of the G-triplex (G3)/thioflavin T (ThT) catalyzed by the adjacent double-stranded DNA positioned at the 5' terminus of the G3, the G3-specific oligonucleotide (G3MB6) was utilized to facilitate the rapid detection of mercury (Hg(II)) through thymine-Hg(II)-thymine (T-Hg(II)-T) interactions. G3MB6 adopted a hairpin structure in which partially complementary strands could be disrupted with the presence of Hg(II). It prompted the formation of double-stranded DNA by T-Hg(II)-T, inducing the unbound single strand of G3MB6 to spontaneously form a parallel G3 structure, producing a solid fluorescence signal by ThT. Conversely, fluorescence was absent without Hg(II), since no double strand and formation of G3 occurred. The fluorescence intensity of G3MB6 exhibited a positive correlation with Hg(II) concentrations from 17.72 to 300 nM (R2 = 0.9954), boasting a notably low quality of limitation (LOQ) of 17.72 nM. Additionally, it demonstrated remarkable selectivity for detecting Hg(II). Upon application to detect Hg(II) in milk samples, the recovery rates went from 100.3% to 103.2%.


Asunto(s)
ADN , Mercurio , Mercurio/análisis , Mercurio/química , ADN/química , Animales , Espectrometría de Fluorescencia/métodos , Conformación de Ácido Nucleico , Timina/química , Técnicas Biosensibles/métodos , Leche/química
2.
Molecules ; 29(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38893541

RESUMEN

Ammonium polyphosphate (APP), a pivotal constituent within environmentally friendly flame retardants, exhibits notable decomposition susceptibility and potentially engenders ecological peril. Consequently, monitoring the APP concentration to ensure product integrity and facilitate the efficacious management of wastewater from production processes is of great significance. A fluorescent assay was devised to swiftly discern APP utilizing 4',6'-diamino-2-phenylindole (DAPI). With increasing APP concentrations, DAPI undergoes intercalation within its structure, emitting pronounced fluorescence. Notably, the flame retardant JLS-PNA220-A, predominantly comprising APP, was employed as the test substrate. Establishing a linear relationship between fluorescence intensity (F-F0) and JLS-PNA220-A concentration yielded the equation y = 76.08x + 463.2 (R2 = 0.9992), with a LOD determined to be 0.853 mg/L. The method was used to assess the degradation capacity of APP-degrading bacteria. Strain D-3 was isolated, and subsequent analysis of its 16S DNA sequence classified it as belonging to the Acinetobacter genus. Acinetobacter nosocomialis D-3 demonstrated superior APP degradation capabilities under pH 7 at 37 °C, with degradation rates exceeding 85% over a four-day cultivation period. It underscores the sensitivity and efficacy of the proposed method for APP detection. Furthermore, Acinetobacter nosocomialis D-3 exhibits promising potential for remediation of residual APP through environmental biodegradation processes.


Asunto(s)
Acinetobacter , Biodegradación Ambiental , Polifosfatos , Acinetobacter/metabolismo , Acinetobacter/genética , Polifosfatos/metabolismo , Polifosfatos/química , Indoles/metabolismo , Indoles/química , Compuestos de Amonio/metabolismo , Compuestos de Amonio/química , Retardadores de Llama/metabolismo , Retardadores de Llama/análisis
3.
Food Chem ; 451: 139390, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38653103

RESUMEN

The DNA-based biosensor utilises a thymine/guanine(T/G)-rich ODN-4 scaffold with 4',6-diamidino-2-phenylindole(DAPI) as a fluorescent emissary to monitor mercury/lead(Hg(II)/Pb(II)) ions simultaneously. Key to its bifocal detection capability is the twin unbound cytosine(C) bases strategically bridging the G-quadruplex and T-rich sequences, enabling their synergistic interplay. It facilitates the recognition of Hg(II)/Pb(II) ions, characterised by high specificity, and effectively mitigates interference from silver(Ag(I)). The G-quadruplex, guided by the C bases, induces a conformational transition in T-Hg(II)-T complexes, resulting in intense fluorescence. Pb(II) causes a spatial shift in the G-quadruplex, relaxing the T-Hg(II)-T base pairs and attenuating the fluorescence signal. The ODN-4 exhibits a robust, linear correlation with Hg(II) concentration (4.09 nmol/L to 1000 nmol/L) and Pb(II) concentration (3.22 nmol/L to 5 µmol/L). Recovery rates in milk, tap water, and rice water specimens with both ions validate method accuracy (Hg(II): 95.19% to 104.68%, Pb(II): 98.20% to 103.46%). It holds promising prospects for practical food analysis.


Asunto(s)
Técnicas Biosensibles , ADN , Colorantes Fluorescentes , Indoles , Mercurio , Técnicas Biosensibles/instrumentación , ADN/química , Colorantes Fluorescentes/química , Mercurio/análisis , Mercurio/química , Indoles/química , Plomo/análisis , Plomo/química , Leche/química , Animales , G-Cuádruplex , Metales Pesados/química , Metales Pesados/análisis , Contaminación de Alimentos/análisis , Espectrometría de Fluorescencia
4.
Anal Methods ; 16(1): 83-90, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38078449

RESUMEN

A novel thymine- and guanine-rich oligonucleotide (ODN-7) was engineered explicitly for the detection of Hg(II) and Pb(II) by a single intercalated dye 4',6-diamidinyl-2-phenylindole (DAPI). Upon the introduction of Hg(II), a rapid formation of T-Hg(II)-T base pairs takes place, triggering the assembly of a split G-quadruplex structure, resulting in a strong fluorescence signal due to DAPI intercalating into the T-Hg(II)-T mismatch. The introduction of Pb(II) initiates an interaction with the split G-quadruplex, causing a significant conformational change in its structure. Consequently, the altered split G-quadruplex structure fails to facilitate the insertion of DAPI into the T-Hg(II)-T complexes, leading to fluorescence quenching. This strategy offers a straightforward means of detecting Hg(II) and Pb(II). Leveraging the split G-quadruplex, the ODN-7 sensor enables the detection limits (3σ) for Hg(II) and Pb(II) to reach an impressive low of 0.39 nM and 4.98 nM, respectively. It exhibited a favorable linear range of 0.39-900 nM for Hg(II) detection (R2 = 0.9993) and 4.98 nM-5 µM for Pb(II) determination (R2 = 0.9953), respectively. Furthermore, the proposed sensor had excellent selectivity for detecting Hg(II) and Pb(II). It was used in milk samples containing mixed Hg(II) and Pb(II) solutions, yielding recovery rates of 99.3-103.8% for Hg(II) detection and 100.1-104.1% for Pb(II) detection.


Asunto(s)
Colorantes Fluorescentes , Mercurio , Colorantes Fluorescentes/química , Plomo , Iones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...