Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 15(10): 749, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39406703

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is characterized by Von Hippel Lindau (VHL) gene loss of function mutation, which leads to the accumulation of hypoxia-inducible factor 2α (HIF2α). HIF2α has been well-established as one of the major oncogenic drivers of ccRCC, however, its therapeutic targeting remains a challenge. Through an analysis of proteomic data from ccRCCs and adjacent non-tumor tissues, we herein revealed that Ubiquitin-Specific Peptidase 7 (USP7) was upregulated in tumor tissues, and its depletion by inhibitors or shRNAs caused significant suppression of tumor progression in vitro and in vivo. Mechanistically, USP7 expression is activated by the transcription factors FUBP1 and FUBP3, and it promotes tumor progression mainly by deubiquitinating and stabilizing HIF2α. Moreover, the combination of USP7 inhibitors and afatinib (an ERBB family inhibitor) coordinately induce cell death and tumor suppression. In mechanism, afatinib indirectly inhibits USP7 transcription and accelerates the degradation of HIF2α protein, and the combination of them caused a more profound suppression of HIF2α abundance. These findings reveal a FUBPs-USP7-HIF2α regulatory axis that underlies the progression of ccRCC and provides a rationale for therapeutic targeting of oncogenic HIF2α via combinational treatment of USP7 inhibitor and afatinib.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Carcinoma de Células Renales , Progresión de la Enfermedad , Neoplasias Renales , Peptidasa Específica de Ubiquitina 7 , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/genética , Humanos , Peptidasa Específica de Ubiquitina 7/metabolismo , Peptidasa Específica de Ubiquitina 7/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Neoplasias Renales/genética , Animales , Línea Celular Tumoral , Ratones , Ratones Desnudos , Proteolisis/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica
2.
Virus Res ; 345: 199392, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38729218

RESUMEN

SARS-CoV-2 evolves constantly with various novel mutations. Due to their enhanced infectivity, transmissibility and immune evasion, a comprehensive understanding of the association between these mutations and the respective functional changes is crucial. However, previous mutation studies of major SARS-CoV-2 variants remain limited. Here, we performed systematic analyses of full-length amino acids mutation, phylogenetic features, protein physicochemical properties, molecular dynamics and immune escape as well as pseudotype virus infection assays among thirteen major SARS-CoV-2 variants. We found that Omicron exhibited the most abundant and complex mutation sites, higher indices of hydrophobicity and flexibility than other variants. The results of molecular dynamics simulation suggest that Omicron has the highest number of hydrogen bonds and strongest binding free energy between the S protein and ACE2 receptor. Furthermore, we revealed 10 immune escape sites in 13 major variants, some of them were reported previously, but four of which (i.e. 339/373/477/496) are first reported to be specific to Omicron, whereas 462 is specific to Epslion. The infectivity of these variants was confirmed by the pseudotype virus infection assays. Our findings may help us understand the functional consequences of the mutations within various variants and the underlying mechanisms of the immune escapes conferred by the S proteins.


Asunto(s)
COVID-19 , Evasión Inmune , Simulación de Dinámica Molecular , Mutación , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , SARS-CoV-2/genética , SARS-CoV-2/clasificación , SARS-CoV-2/inmunología , Humanos , COVID-19/virología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/química , Filogenia , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/química , Unión Proteica , Interacciones Hidrofóbicas e Hidrofílicas
3.
Cell Biochem Funct ; 42(1): e3928, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38269503

RESUMEN

Reversible protein ubiquitination is a key process for maintaining cellular homeostasis. Deubiquitinases, which can cleave ubiquitin from substrate proteins, have been reported to be deeply involved in disease progression ranging from oncology to neurological diseases. The human genome encodes approximately 100 deubiquitinases, most of which are poorly characterized. One of the well-characterized deubiquitases is ubiquitin-specific protease 29 (USP29), which is often upregulated in pathological tissues and plays important roles in the progression of different diseases. Moreover, several studies have shown that deletion of Usp29 in mice does not cause visible growth and developmental defects, indicating that USP29 may be an ideal therapeutic target. In this review, we provide a comprehensive summary of the important roles and regulatory mechanisms of USP29 in cancer and other diseases, which may help us better understand its biological functions and improve future studies to construct suitable USP29-targeted therapy systems.


Asunto(s)
Neoplasias , Humanos , Animales , Ratones , Neoplasias/genética , Genoma Humano , Ubiquitina , Ubiquitinación , Enzimas Desubicuitinizantes , Proteasas Ubiquitina-Específicas/genética
4.
Cancer Cell Int ; 24(1): 33, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233848

RESUMEN

BACKGROUND: Gastric cancer is a highly prevalent cancer type and the underlying molecular mechanisms are not fully understood. Ubiquitin-specific peptidase (USP) 29 has been suggested to regulate cell fate in several types of cancer, but its potential role in gastric carcinogenesis remains unclear. METHODS: The expression of USP29 in normal and gastric cancer tissues was analyzed by bioinformatics analysis, immunohistochemistry and immunoblot. Gene overexpression, CRISPR-Cas9 technology, RNAi, and Usp29 knockout mice were used to investigate the roles of USP29 in cell culture, xenograft, and benzo[a]pyrene (BaP)-induced gastric carcinogenesis models. We then delineated the underlying mechanisms using mass spectrometry, co-immunoprecipitation (Co-IP), immunoblot, ubiquitination assay, chromatin immunoprecipitation (ChIP), quantitative real-time PCR (qRT-PCR), and luciferase assays. RESULTS: In this study, we found that USP29 expression was significantly upregulated in gastric cancers and associated with poor patient survival. Ectopic expression of USP29 promoted, while depletion suppressed the tumor growth in vitro and in vivo mouse model. Mechanistically, transcription factor far upstream element binding protein 1 (FUBP1) directly activates USP29 gene transcription, which then interacts with and stabilizes aurora kinase B (AURKB) by suppressing K48-linked polyubiquitination, constituting a FUBP1-USP29-AURKB regulatory axis that medicates the oncogenic role of USP29. Importantly, systemic knockout of Usp29 in mice not only significantly decreased the BaP-induced carcinogenesis but also suppressed the Aurkb level in forestomach tissues. CONCLUSIONS: These findings uncovered a novel FUBP1-USP29-AURKB regulatory axis that may play important roles in gastric carcinogenesis and tumor progression, and suggested that USP29 may become a promising drug target for cancer therapy.

5.
Virus Res ; 339: 199251, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37884208

RESUMEN

Integrins have been suggested to be involved in SARS-CoV-2 infection, but the underlying mechanisms remain largely unclear. This study aimed to investigate how integrins facilitate the ACE2-mediated cellular entry of SARS-CoV-2. We first tested the susceptibility of a panel of human cell lines to SARS-CoV-2 infection using the spike protein pseudotyped virus assay and examined the expression levels of integrins in these cell lines by qPCR, western blot and flow cytometry. We found that integrin αvß1 was highly enriched in the SARS-CoV-2 susceptible cell lines. Additional studies demonstrated that RGD (403-405)→AAA mutant was defective in binding to integrin αvß1 compared to its wild type counterpart, and anti-αvß1 integrin antibodies significantly inhibited the entry of SARS-CoV-2 into the cells. Further studies using mouse NIH3T3 cells expressing human ACE2, integrin αv, integrin ß1, and/or integrin αvß1 suggest that integrin αvß1 was unable to function as an independent receptor but could significantly facilitate the cellular entry of SASR-CoV-2. Finally, we observed that the Omicron exhibited a significant increase in the ACE2-mediated viral entry. Our findings may enhance our understanding of the pathogenesis of SARS-CoV-2 infection and offer potential therapeutic target for COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , Ratones , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/metabolismo , COVID-19/virología , Células 3T3 NIH , Receptores de Vitronectina/metabolismo , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus
6.
Int Immunopharmacol ; 124(Pt B): 110983, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37769533

RESUMEN

BACKGROUND: The Coronavirus disease-19 (COVID-19) pandemic has posed a serious threat to global health. Thymosin α1 (Tα1) was considered to be applied in COVID-19 therapy. However, the data remains limited. METHODS: Participants with or without Tα1 treatment were recruited. Single cell RNA-sequencing (scRNA-seq) and T cell receptor-sequencing (TCR-seq) of the peripheral blood mononuclear cell (PBMC) samples were done to analyze immune features. The differential expression analysis and functional enrichment analysis were performed to explore the mechanism of Tα1 therapy. RESULTS: 33 symptomatic SARS-CoV-2-infected individuals (COV) and 11 healthy controls (HC) were enrolled in this study. The proportion of CD3+ KLRD1+ NKT, TBX21+ CD8+ NKT was observed to increase in COVID-19 patients with Tα1 treatment (COVT) than those without Tα1 (COV) (p = 0.024; p = 0.010). These two clusters were also significantly higher in Health controls with Tα1 treatment (HCT) than those without Tα1 (HC) (p = 0.016; p = 0.031). Besides, a series of genes and pathways related to immune responses were significantly higher enriched in Tα1 groups TBX21+ CD8+ NKT, such as KLRB1, PRF1, natural killer cell-mediated cytotoxicity pathway, chemokine signaling pathway, JAK-STAT signaling pathway. The increased TRBV9-TRBJ1-1 pair existed in both HCs and COVID-19 patients after Tα1 treatment. 1389 common complementarity determining region 3 nucleotides (CDR 3 nt) were found in COV and HC, while 0 CDR 3 nt was common in COVT and HCT. CONCLUSIONS: Tα1 increased CD3+ KLRD1+ NKT, TBX21+ CD8+ NKT cell proportion and stimulated the diversity of TCR clones in COVT and HCT. And Tα1 could regulate the expression of genes associated with NKT activation or cytotoxicity to promote NKT cells. These data support the use of Tα1 in COVID-19 patients.


Asunto(s)
COVID-19 , Timosina , Humanos , Timalfasina/uso terapéutico , Timosina/genética , Timosina/metabolismo , Leucocitos Mononucleares/metabolismo , SARS-CoV-2/metabolismo , Receptores de Antígenos de Linfocitos T/genética
7.
Cancer Biol Ther ; 24(1): 2237200, 2023 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-37463886

RESUMEN

Cancer cells show enhanced nucleotide biosynthesis, which is essential for their unlimited proliferation, but the underlying mechanisms are not entirely clear. Ubiquitin specific peptidase 29 (USP29) was reported to sustain neuroblastoma progression by promoting glycolysis and glutamine catabolism; however, its potential role in regulating nucleotide biosynthesis in tumor cells remains unknown. In this study, we depleted endogenous USP29 in MYCN-amplified neuroblastoma SK-N-BE2 cells by sgRNAs and conducted metabolomic analysis in cells with or without USP29 depletion, we found that USP29 deficiency caused a disorder of intermediates involved in glycolysis and nucleotide biosynthesis. De novo nucleotide biosynthesis was analyzed using 13C6 glucose as a tracer under normoxia and hypoxia. The results indicated that USP29-depleted cells showed inhibition of nucleotide anabolic intermediates derived from glucose, and this inhibition was more significant under hypoxic conditions. Analysis of RNA sequencing data in SK-N-BE2 cells demonstrated that USP29 promoted the gene expression of metabolic enzymes involved in nucleotide anabolism, probably by regulating MYC and E2F downstream pathways. These findings indicated that USP29 is a key regulator of nucleotide biosynthesis in tumor cells.


Asunto(s)
Multiómica , Neuroblastoma , Humanos , ARN Guía de Sistemas CRISPR-Cas , Neuroblastoma/patología , Glucólisis , Glucosa , Línea Celular Tumoral , Proteína Proto-Oncogénica N-Myc/genética , Proteína Proto-Oncogénica N-Myc/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteasas Ubiquitina-Específicas/metabolismo
8.
Infect Immun ; 90(10): e0032922, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36169312

RESUMEN

Bloodstream infections (BSIs) caused by Pseudomonas aeruginosa are associated with a high mortality rate in the clinic. However, the fitness mechanisms responsible for the evolution of virulence factors that facilitate the dissemination of P. aeruginosa to the bloodstream are poorly understood. In this study, a transcriptomic analysis of the BSI-associated P. aeruginosa clinical isolates showed a high-level expression of cell-surface signaling (CSS) system Hxu. Whole-genome sequencing and comparative genomics of these isolates showed that a mutation in rnfE gene was responsible for the elevated expression of the Hxu-CSS pathway. Most importantly, deletion of the hxuIRA gene cluster in a laboratory strain PAO1 reduced its BSI capability while overexpression of the HxuIRA pathway promoted BSI in a murine sepsis model. We further demonstrated that multiple components in the blood plasma, including heme, hemoglobin, the heme-scavenging proteins haptoglobin, and hemopexin, as well as the iron-delivery protein transferrin, could activate the Hxu system. Together, these studies suggested that the Hxu-CSS system was an important signal transduction pathway contributing to the adaptive pathogenesis of P. aeruginosa in BSI.


Asunto(s)
Infecciones por Pseudomonas , Sepsis , Ratones , Animales , Pseudomonas aeruginosa/metabolismo , Hemopexina/metabolismo , Haptoglobinas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Hemo/metabolismo , Transducción de Señal , Hierro/metabolismo , Hemoglobinas/metabolismo , Transferrinas/metabolismo
9.
Microbiol Spectr ; 10(1): e0162021, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35044199

RESUMEN

The opportunistic pathogen Pseudomonas aeruginosa often adapts to its host environment and causes recurrent nosocomial infections. The extracytoplasmic function (ECF) sigma factor enables bacteria to alter their gene expression in response to host environmental stimuli. Here, we report an ECF sigma factor, HxuI, which is rapidly induced once P. aeruginosa encounters the host. Host stresses such as iron limitation, oxidative stress, low oxygen, and nitric oxide induce the expression of hxuI. By combining RNA-seq and promoter-lacZ reporter fusion analysis, we reveal that HxuI can activate the expression of diverse metabolic and virulence pathways which are critical to P. aeruginosa infections, including iron acquisition, denitrification, pyocyanin synthesis, and bacteriocin production. Most importantly, overexpression of the hxuI in the laboratory strain PAO1 promotes its colonization in both murine lung and subcutaneous infections. Together, our findings show that HxuI, a key player in host stress-response, controls the in vivo adaptability and virulence of P. aeruginosa during infection. IMPORTANCE P. aeruginosa has a strong ability to adapt to diverse environments, making it capable of causing recurrent and multisite infections in clinics. Understanding host adaptive mechanisms plays an important guiding role in the development of new anti-infective agents. Here, we demonstrate that an ECFσ factor of P. aeruginosa response to the host-inflicted stresses, which promotes the bacterial in vivo fitness and pathogenicity. Furthermore, our findings may help explain the emergence of highly transmissible strains of P. aeruginosa and the acute exacerbations during chronic infections.


Asunto(s)
Proteínas Bacterianas/metabolismo , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/metabolismo , Factor sigma/metabolismo , Animales , Proteínas Bacterianas/genética , Femenino , Regulación Bacteriana de la Expresión Génica , Humanos , Pulmón/microbiología , Ratones , Ratones Endogámicos BALB C , Pseudomonas aeruginosa/genética , Regulón , Factor sigma/genética
10.
J Antimicrob Chemother ; 75(6): 1443-1452, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32129854

RESUMEN

OBJECTIVES: A group of ST664 XDR Pseudomonas aeruginosa strains have been isolated from a burn clinic. Here we decipher their resistomes and likely mechanisms of resistance acquisition. METHODS: The complete nucleotide sequences of representative isolates were determined, by PacBio and Illumina MiSeq sequencing, and analysed for antimicrobial resistance (AMR) genes as well as sequence variations. S1-PFGE was used to determine the sizes and numbers of plasmids harboured by the isolates. Purified plasmid DNA was further sequenced by PacBio technology, closed manually and annotated by RAST. The mobility of plasmids was determined by conjugation assays. RESULTS: The XDR P. aeruginosa ST664 clone carries 11 AMR genes, including a blaKPC-2 gene that confers resistance to carbapenems. Most of the ST664 isolates carry three coexisting plasmids. blaKPC-2 and a cluster of three AMR genes (aadB-cmlA1-sul1) are encoded on a 475 kb megaplasmid pNK546a, which codes for an IncP-3-like replication and partitioning mechanism, but has lost the conjugative transfer system. Interestingly, however, pNK546a is mobilizable and can be transferred to P. aeruginosa PAO1 with the help of a co-residing IncP-7 conjugative plasmid. The blaKPC-2 gene is carried by an IS6100-ISKpn27-blaKPC-2-ΔISKpn6-Tn1403 mobile element, which might be brought into the ST664 clone by another co-resident IncP-1α plasmid, which is inclined to be lost. Moreover, pNK546a harbours multiple heavy metal (mercury, tellurite and silver) resistance modules. CONCLUSIONS: To the best of our knowledge, pNK546a is the first fully sequenced blaKPC-2-carrying megaplasmid from P. aeruginosa. These results give new insights into bacterial adaptation and evolution during nosocomial infections.


Asunto(s)
Pseudomonas aeruginosa , beta-Lactamasas , Células Clonales , ADN Bacteriano , Biología Molecular , Plásmidos/genética , Pseudomonas aeruginosa/genética , beta-Lactamasas/genética
11.
Biotechnol Bioeng ; 117(3): 816-831, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31814110

RESUMEN

Intracellular delivery of functional proteins is of great interest for basic biological research as well as for clinical applications. Transfection is the most commonly used method, however, it is not applicable to large-scale manipulation and inefficient in important cell types implicated in biomedical applications, such as epithelial, immune and pluripotent stem cells. In this study, we explored a bacterial type III secretion system (Bac-T3SS)-mediated proteofection method to overcome these limitations. An attenuated Pseudomonas aeruginosa vector was constructed, which has features of low toxicity, high T3SS activity, and self-limiting growth. Compared to the method of transfection, the Bac-T3SS showed significantly higher efficiencies of Cre recombinase translocation and target site recombination for hard-to-transfect human cell lines. Furthermore, through the delivery of ß-lactamase in live animals, we demonstrated the feasibility and biosafety of in vivo application of the Bac-T3SS. This study provided an efficient and low-cost proteofection strategy for laboratory use as well as for application in large-scale cell manipulations.


Asunto(s)
Integrasas/genética , Proteínas Recombinantes de Fusión/genética , Transfección/métodos , Sistemas de Secreción Tipo III/genética , Animales , Proteínas Bacterianas/genética , Reactores Biológicos , Línea Celular , Vectores Genéticos/genética , Humanos , Ratones , Células Madre Pluripotentes , Pseudomonas aeruginosa/genética , Proteínas Recombinantes de Fusión/metabolismo , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...