RESUMEN
BACKGROUND: Mastitis is a disease that incurs significant costs in the dairy industry. A promising approach to mitigate its negative effects is to genetically improve the resistance of dairy cattle to mastitis. A meta-analysis of genome-wide association studies (GWAS) across multiple breeds for clinical mastitis (CM) and its indicator trait, somatic cell score (SCS), is a powerful method to identify functional genetic variants that impact mastitis resistance. RESULTS: We conducted meta-analyses of eight and fourteen GWAS on CM and SCS, respectively, using 30,689 and 119,438 animals from six dairy cattle breeds. Methods for the meta-analyses were selected to properly account for the multi-breed structure of the GWAS data. Our study revealed 58 lead markers that were associated with mastitis incidence, including 16 loci that did not overlap with previously identified quantitative trait loci (QTL), as curated at the Animal QTLdb. Post-GWAS analysis techniques such as gene-based analysis and genomic feature enrichment analysis enabled prioritization of 31 candidate genes and 14 credible candidate causal variants that affect mastitis. CONCLUSIONS: Our list of candidate genes can help to elucidate the genetic architecture underlying mastitis resistance and provide better tools for the prevention or treatment of mastitis, ultimately contributing to more sustainable animal production.
Asunto(s)
Resistencia a la Enfermedad , Estudio de Asociación del Genoma Completo , Mastitis Bovina , Sitios de Carácter Cuantitativo , Animales , Bovinos/genética , Mastitis Bovina/genética , Femenino , Estudio de Asociación del Genoma Completo/métodos , Estudio de Asociación del Genoma Completo/veterinaria , Resistencia a la Enfermedad/genética , Polimorfismo de Nucleótido Simple , Cruzamiento/métodosRESUMEN
Black soldier fly (BSF; Hermetia illucens) is a promising insect species for food and feed production as its larvae can convert different organic waste to high-value protein. Selective breeding is one way to optimize production, but the potential of breeding is only starting to be explored and not yet utilized for BSF. To assist in monitoring a captive population and implementing a breeding program, genomics tools are imperative. We conducted whole genome sequencing of two captive populations separated by geographical distance - Denmark (DK) and Texas, USA (TX). Various population genetics analyses revealed a moderate genetic differentiation between two populations. Moreover, we observed higher inbreeding in the DK population, and the detection of a subpopulation within DK population aligned well with the recent foundation of the DK population from two captive populations. Additionally, we generated gene ontology annotation and variants annotation for wider potential applications. Our findings establish a robust marker set for research in population genetics, facilitating the monitoring of inbreeding and laying the groundwork for practical breeding programs for BSF.
Asunto(s)
Dípteros , Secuenciación Completa del Genoma , Animales , Dípteros/genética , Genoma de los Insectos , Endogamia , Dinamarca , TexasRESUMEN
The Farm Animal Genotype-Tissue Expression (FarmGTEx) project has been established to develop a public resource of genetic regulatory variants in livestock, which is essential for linking genetic polymorphisms to variation in phenotypes, helping fundamental biological discovery and exploitation in animal breeding and human biomedicine. Here we show results from the pilot phase of PigGTEx by processing 5,457 RNA-sequencing and 1,602 whole-genome sequencing samples passing quality control from pigs. We build a pig genotype imputation panel and associate millions of genetic variants with five types of transcriptomic phenotypes in 34 tissues. We evaluate tissue specificity of regulatory effects and elucidate molecular mechanisms of their action using multi-omics data. Leveraging this resource, we decipher regulatory mechanisms underlying 207 pig complex phenotypes and demonstrate the similarity of pigs to humans in gene expression and the genetic regulation behind complex phenotypes, supporting the importance of pigs as a human biomedical model.
Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Porcinos/genética , Animales , Humanos , Genotipo , Fenotipo , Análisis de Secuencia de ARNRESUMEN
Identifying quantitative trait loci (QTL) associated with calf survival is essential for both reducing economic loss in cattle industry and understanding the genetic basis of the trait. To identify mutations and genes underlying young stock survival (YSS), we performed GWAS using de-regressed estimated breeding values of a YSS index and its component traits defined by sex and age in 3,077 Nordic Red Dairy Cattle (RDC) bulls and 2 stillbirth traits (first lactation and later lactations) in 5,141 RDC bulls. Two associated QTL regions on Bos taurus autosome (BTA) 4 and 6 were identified for the YSS index. The results of 4 YSS component traits indicate that same QTL regions were associated with bull and heifer calf mortality, but the effects were different over the growing period and suggested an additional QTL on BTA23. The GWAS on stillbirth identified 3 additional QTL regions on BTA5, 14, and 24 compared with YSS and its component traits. The conditional test of BTA6 showed at least 2 closely located QTL segregating for YSS component traits and stillbirth. We found 2 independent QTL for stillbirth on BTA23. The post-GWAS revealed LCORL, PPM1K, SSP1, MED28, and LAP3 are putative causal genes on BTA6, and a frame shift variant within LCORL, BTA6:37401770 (rs384548488) could be the putative causal variant. On BTA4, the GRB10 gene is the putative causal gene and BTA4:5296018 is the putative causal variant. In addition, NDUFA9 and FGF23 on BTA5, LYN on BTA14, and KCNK5 on BTA23 are putative causal genes for QTL for stillbirth. The gene analysis also proposed several candidate genes. Our findings shed new light on the candidate genes affecting calf survival, and the knowledge could be utilized to reduce calf mortality and thereby enhance welfare of dairy cattle.
RESUMEN
We have previously demonstrated that pre- and early postnatal malnutrition in sheep induced depot- and sex-specific changes in adipose morphological features, metabolic outcomes, and transcriptome in adulthood, with perirenal (PER) as the major target followed by subcutaneous (SUB) adipose tissue. We aimed to identify coexpressed and hub genes in SUB and PER to identify the underlying molecular mechanisms contributing to the early nutritional programming of adipose-related phenotypic outcomes. Transcriptomes of SUB and PER of male and female adult sheep with different pre- and early postnatal nutrition histories were used to construct networks of coexpressed genes likely to be functionally associated with pre- and early postnatal nutrition histories and phenotypic traits using weighted gene coexpression network analysis. The modules from PER showed enrichment of cell cycle regulation, gene expression, transmembrane transport, and metabolic processes associated with both sexes' prenatal nutrition. In SUB (only males), a module of enriched adenosine diphosphate metabolism and development correlated with prenatal nutrition. Sex-specific module enrichments were found in PER, such as chromatin modification in the male network but histone modification and mitochondria- and oxidative phosphorylation-related functions in the female network. These sex-specific modules correlated with prenatal nutrition and adipocyte size distribution patterns. Our results point to PER as a primary target of prenatal malnutrition compared to SUB, which played only a minor role. The prenatal programming of gene expression and cell cycle, potentially through epigenetic modifications, might be underlying mechanisms responsible for observed changes in PER expandability and adipocyte-size distribution patterns in adulthood in both sexes.
Asunto(s)
Tejido Adiposo , Desnutrición , Embarazo , Ovinos , Masculino , Femenino , Animales , Tejido Adiposo/metabolismo , Obesidad/genética , Desnutrición/genética , Desnutrición/metabolismo , Grasa Subcutánea/metabolismo , AdiposidadRESUMEN
Quantile regression has emerged as a useful and effective tool in modeling survival data, especially for cases where noises demonstrate heterogeneity. Despite recent advancements, non-smooth components involved in censored quantile regression estimators may often yield numerically unstable results, which, in turn, lead to potentially self-contradicting conclusions. We propose an estimating equation-based approach to obtain consistent estimators of the regression coefficients of interest via the induced smoothing technique to circumvent the difficulty. Our proposed estimator can be shown to be asymptotically equivalent to its original unsmoothed version, whose consistency and asymptotic normality can be readily established. Extensions to handle functional covariate data and recurrent event data are also discussed. To alleviate the heavy computational burden of bootstrap-based variance estimation, we also propose an efficient resampling procedure that reduces the computational time considerably. Our numerical studies demonstrate that our proposed estimator provides substantially smoother model parameter estimates across different quantile levels and can achieve better statistical efficiency compared to a plain estimator under various finite-sample settings. The proposed method is also illustrated via four survival datasets, including the HMO (health maintenance organizations) HIV (human immunodeficiency virus) data, the primary biliary cirrhosis (PBC) data, and so forth.
Asunto(s)
VIH , Modelos Estadísticos , Humanos , Simulación por ComputadorRESUMEN
Microgravity changes the gene expression pattern in various cell types. This study focuses on the breast cancer cell lines MCF-7 (less invasive) and MDA-MB-231 (triple-negative, highly invasive). The cells were cultured for 14 days under simulated microgravity (s-µg) conditions using a random positioning machine (RPM). We investigated cytoskeletal and extracellular matrix (ECM) factors as well as focal adhesion (FA) and the transmembrane proteins involved in different cellular signaling pathways (MAPK, PAM and VEGF). The mRNA expressions of 24 genes of interest (TUBB, ACTB, COL1A1, COL4A5, LAMA3, ITGB1, CD44, VEGF, FLK1, EGFR, SRC, FAK1, RAF1, AKT1, ERK1, MAPK14, MAP2K1, MTOR, RICTOR, VCL, PXN, CDKN1, CTNNA1 and CTNNB1) were determined by quantitative real-time PCR (qPCR) and studied using STRING interaction analysis. Histochemical staining was carried out to investigate the morphology of the adherent cells (ADs) and the multicellular spheroids (MCSs) after RPM exposure. To better understand this experimental model in the context of breast cancer patients, a weighted gene co-expression network analysis (WGCNA) was conducted to obtain the expression profiles of 35 breast cell lines from the HMS LINCS Database. The qPCR-verified genes were searched in the mammalian phenotype database and the human genome-wide association studies (GWAS) Catalog. The results demonstrated the positive association between the real metastatic microtumor environment and MCSs with respect to the extracellular matrix, cytoskeleton, morphology, different cellular signaling pathway key proteins and several other components. In summary, the microgravity-engineered three-dimensional MCS model can be utilized to study breast cancer cell behavior and to assess the therapeutic efficacies of drugs against breast cancer in the future.
Asunto(s)
Neoplasias de la Mama , Ingravidez , Humanos , Femenino , Transducción de Señal/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Estudio de Asociación del Genoma Completo , Expresión Génica , Simulación de Ingravidez , Línea Celular TumoralRESUMEN
Genome-wide association studies (GWAS) help identify polymorphic sites or genes linked to phenotypic variance, but a few identified genes and/or single nucleotide polymorphisms (SNPs) are unlikely to explain a large part of the phenotypic variability of complex traits. In this study, the focus was moved from single loci to functional units, expressed by the metabolic pathways as defined in the Kyoto Encyclopaedia of Genes and Genomes (KEGG) database. Consequently, the aim of this study was to estimate KEGG effects on stature in three Nordic dairy cattle breeds using SNP effects from GWAS as the dependent variable. The SNPs were annotated to genes, then the genes to KEGG pathways. The effects of KEGG pathways were estimated separately for each breed using a mixed linear model incorporating the similarity between pathways expressed by common genes. The KEGG pathway D-amino acid metabolism (map00473) was estimated to be significant for stature in two of the analysed breeds and revealed a borderline significance in the third breed. Thus, we demonstrate that the approach to statistical modelling of higher order functional effects on complex traits is useful, and provides evidence of the importance of D-amino acids for growth in cattle.
Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Bovinos/genética , Animales , Estudio de Asociación del Genoma Completo/veterinaria , Modelos Lineales , Sitios de Carácter Cuantitativo , Herencia MultifactorialRESUMEN
By their paternal transmission, Y-chromosomal haplotypes are sensitive markers of population history and male-mediated introgression. Previous studies identified biallelic single-nucleotide variants in the SRY, ZFY and DDX3Y genes, which in domestic goats identified four major Y-chromosomal haplotypes, Y1A, Y1B, Y2A and Y2B, with a marked geographical partitioning. Here, we extracted goat Y-chromosomal variants from whole-genome sequences of 386 domestic goats (75 breeds) and seven wild goat species, which were generated by the VarGoats goat genome project. Phylogenetic analyses indicated domestic haplogroups corresponding to Y1B, Y2A and Y2B, respectively, whereas Y1A is split into Y1AA and Y1AB. All five haplogroups were detected in 26 ancient DNA samples from southeast Europe or Asia. Haplotypes from present-day bezoars are not shared with domestic goats and are attached to deep nodes of the trees and networks. Haplogroup distributions for 186 domestic breeds indicate ancient paternal population bottlenecks and expansions during migrations into northern Europe, eastern and southern Asia, and Africa south of the Sahara. In addition, sharing of haplogroups indicates male-mediated introgressions, most notably an early gene flow from Asian goats into Madagascar and the crossbreeding that in the 19th century resulted in the popular Boer and Anglo-Nubian breeds. More recent introgressions are those from European goats into the native Korean goat population and from Boer goat into Uganda, Kenya, Tanzania, Malawi and Zimbabwe. This study illustrates the power of the Y-chromosomal variants for reconstructing the history of domestic species with a wide geographical range.
Asunto(s)
ADN Mitocondrial , Variación Genética , Animales , ADN Mitocondrial/genética , Cabras/genética , Haplotipos/genética , Filogenia , Cromosoma Y/genéticaRESUMEN
BACKGROUND: Imputation from genotyping array to whole-genome sequence variants using resequencing of representative reference populations enhances our ability to map genetic factors affecting complex phenotypes in livestock species. The accumulation of knowledge about gene function in human and laboratory animals can provide substantial advantage for genomic research in livestock species. RESULTS: In this study, 201,388 pigs from three commercial Danish breeds genotyped with low to medium (8.5k to 70k) SNP arrays were imputed to whole genome sequence variants using a two-step approach. Both imputation steps achieved high accuracies, and in total this yielded 26,447,434 markers on 18 autosomes. The average estimated imputation accuracy of markers with minor allele frequency ≥ 0.05 was 0.94. To overcome the memory consumption of running genome-wide association study (GWAS) for each breed, we performed within-breed subpopulation GWAS then within-breed meta-analysis for average daily weight gain (ADG), followed by a multi-breed meta-analysis of GWAS summary statistics. We identified 15 quantitative trait loci (QTL). Our post-GWAS analysis strategy to prioritize of candidate genes including information like gene ontology, mammalian phenotype database, differential expression gene analysis of high and low feed efficiency pig and human GWAS catalog for height, obesity, and body mass index, we proposed MRAP2, LEPROT, PMAIP1, ENSSSCG00000036234, BMP2, ELFN1, LIG4 and FAM155A as the candidate genes with biological support for ADG in pigs. CONCLUSION: Our post-GWAS analysis strategy helped to identify candidate genes not just by distance to the lead SNP but also by multiple sources of biological evidence. Besides, the identified QTL overlap with genes which are known for their association with human growth-related traits. The GWAS with this large data set showed the power to map the genetic factors associated with ADG in pigs and have added to our understanding of the genetics of growth across mammalian species.
Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Animales , Cruzamiento , Genotipo , Humanos , Fenotipo , Polimorfismo de Nucleótido Simple , Porcinos/genética , Aumento de Peso/genéticaRESUMEN
The functional annotation of livestock genomes is crucial for understanding the molecular mechanisms that underpin complex traits of economic importance, adaptive evolution and comparative genomics. Here, we provide the most comprehensive catalogue to date of regulatory elements in the pig (Sus scrofa) by integrating 223 epigenomic and transcriptomic data sets, representing 14 biologically important tissues. We systematically describe the dynamic epigenetic landscape across tissues by functionally annotating 15 different chromatin states and defining their tissue-specific regulatory activities. We demonstrate that genomic variants associated with complex traits and adaptive evolution in pig are significantly enriched in active promoters and enhancers. Furthermore, we reveal distinct tissue-specific regulatory selection between Asian and European pig domestication processes. Compared with human and mouse epigenomes, we show that porcine regulatory elements are more conserved in DNA sequence, under both rapid and slow evolution, than those under neutral evolution across pig, mouse, and human. Finally, we provide biological insights on tissue-specific regulatory conservation, and by integrating 47 human genome-wide association studies, we demonstrate that, depending on the traits, mouse or pig might be more appropriate biomedical models for different complex traits and diseases.
Asunto(s)
Estudio de Asociación del Genoma Completo , Genoma , Herencia Multifactorial , Animales , Secuencia de Bases , Cruzamiento , Cromatina , Metilación de ADN , Epigenoma , Evolución Molecular , Femenino , Regulación de la Expresión Génica , Genómica , Humanos , Masculino , Ratones , Fenotipo , Regiones Promotoras Genéticas , Secuencias Reguladoras de Ácidos Nucleicos , Porcinos , TranscriptomaRESUMEN
BACKGROUND: Early life malnutrition is known to target adipose tissue with varying impact depending on timing of the insult. This study aimed to identify differentially expressed genes in subcutaneous (SUB) and perirenal (PER) adipose tissue of 2.5-years old sheep to elucidate the biology underlying differential impacts of late gestation versus early postnatal malnutrition on functional development of adipose tissues. Adipose tissues were obtained from 37 adult sheep born as twins to dams fed either NORM (fulfilling energy and protein requirements), LOW (50% of NORM) or HIGH (110% of protein and 150% of energy requirements) diets in the last 6-weeks of gestation. From day 3 to 6 months of age, lambs were fed high-carbohydrate-high-fat (HCHF) or moderate low-fat (CONV) diets, and thereafter the same moderate low-fat diet. RESULTS: The gene expression profile of SUB in the adult sheep was not affected by the pre- or early postnatal nutrition history. In PER, 993 and 186 differentially expressed genes (DEGs) were identified in LOW versus HIGH and NORM, respectively, but no DEG was found between HIGH and NORM. DEGs identified in the mismatched pre- and postnatal nutrition groups LOW-HCHF (101) and HIGH-HCHF (192) were largely downregulated compared to NORM-CONV. Out of 831 DEGs, 595 and 236 were up- and downregulated in HCHF versus CONV, respectively. The functional enrichment analyses revealed that transmembrane (ion) transport activities, motor activities related to cytoskeletal and spermatozoa function (microtubules and the cytoskeletal motor protein, dynein), and responsiveness to the (micro) environmental extracellular conditions, including endocrine and nervous stimuli were enriched in the DEGs of LOW versus HIGH and NORM. We confirmed that mismatched pre- and postnatal feeding was associated with long-term programming of adipose tissue remodeling and immunity-related pathways. In agreement with phenotypic measurements, early postnatal HCHF feeding targeted pathways involved in kidney cell differentiation, and mismatched LOW-HCHF sheep had specific impairments in cholesterol metabolism pathways. CONCLUSIONS: Both pre- and postnatal malnutrition differentially programmed (patho-) physiological pathways with implications for adipose functional development associated with metabolic dysfunctions, and PER was a major target.
Asunto(s)
Desnutrición , Transcriptoma , Tejido Adiposo , Animales , Dieta , Femenino , Riñón , Masculino , Desnutrición/genética , Embarazo , OvinosRESUMEN
This work represents a novel mechanistic approach to simulate and study genomic networks with accompanying regulatory interactions and complex mechanisms of quantitative trait formation. The approach implemented in MeSCoT software is conceptually based on the omnigenic genetic model of quantitative (complex) trait, and closely imitates the basic in vivo mechanisms of quantitative trait realization. The software provides a framework to study molecular mechanisms of gene-by-gene and gene-by-environment interactions underlying quantitative trait's realization and allows detailed mechanistic studies of impact of genetic and phenotypic variance on gene regulation. MeSCoT performs a detailed simulation of genes' regulatory interactions for variable genomic architectures and generates complete set of transcriptional and translational data together with simulated quantitative trait values. Such data provide opportunities to study, for example, verification of novel statistical methods aiming to integrate intermediate phenotypes together with final phenotype in quantitative genetic analyses or to investigate novel approaches for exploiting gene-by-gene and gene-by-environment interactions.
Asunto(s)
Modelos Genéticos , Sitios de Carácter Cuantitativo , Redes Reguladoras de Genes , Epistasis Genética , FenotipoRESUMEN
Dyslipidemia is the primary cause of cardiovascular disease, which is a serious human health problem in large parts of the world. Therefore, it is important to understand the genetic and molecular mechanisms that regulate blood levels of cholesterol and other lipids. Discovery of genetic elements in the regulatory machinery is often based on genome wide associations studies (GWAS) focused on end-point phenotypes such as total cholesterol level or a disease diagnosis. In the present study, we add endophenotypes, such as serum levels of intermediate metabolites in the cholesterol synthesis pathways, to a GWAS analysis and use the pig as an animal model. We do this to increase statistical power and to facilitate biological interpretation of results. Although the study population was limited to ~ 300 individuals, we identify two genome-wide significant associations and ten suggestive associations. Furthermore, we identify 28 tentative associations to loci previously associated with blood lipids or dyslipidemia associated diseases. The associations with endophenotypes may inspire future studies that can dissect the biological mechanisms underlying these previously identified associations and add a new level of understanding to previously identified associations.
Asunto(s)
Colesterol/sangre , Dislipidemias/genética , Endofenotipos , Estudio de Asociación del Genoma Completo , Triglicéridos/sangre , Animales , Enfermedades Cardiovasculares/genética , Femenino , Masculino , PorcinosRESUMEN
Whole-genome sequencing of 217 animals from three Danish commercial pig breeds (Duroc, Landrace [LL], and Yorkshire [YY]) was performed. Twenty-six million single-nucleotide polymorphisms (SNPs) and 8 million insertions or deletions (indels) were uncovered. Among the SNPs, 493,099 variants were located in coding sequences, and 29,430 were predicted to have a high functional impact such as gain or loss of stop codon. Using the whole-genome sequence dataset as the reference, the imputation accuracy for pigs genotyped with high-density SNP chips was examined. The overall average imputation accuracy for all biallelic variants (SNP and indel) was 0.69, while it was 0.83 for variants with minor allele frequency > 0.1. This study provides whole-genome reference data to impute SNP chip-genotyped animals for further studies to fine map quantitative trait loci as well as improving the prediction accuracy in genomic selection. Signatures of selection were identified both through analyses of fixation and differentiation to reveal selective sweeps that may have had prominent roles during breed development or subsequent divergent selection. However, the fixation indices did not indicate a strong divergence among these three breeds. In LL and YY, the integrated haplotype score identified genomic regions under recent selection. These regions contained genes for olfactory receptors and oxidoreductases. Olfactory receptor genes that might have played a major role in the domestication were previously reported to have been under selection in several species including cattle and swine.
Asunto(s)
Variación Genética , Genómica , Porcinos/genética , Animales , Cruzamiento , Dinamarca , Frecuencia de los Genes , Estudio de Asociación del Genoma Completo/veterinaria , Genotipo , Sitios de Carácter CuantitativoRESUMEN
Carrizo citrange [Citrus sinensis (L.) Osbeck × Poncirus trifoliata (L.) Raf., CC] is one of the most widely used rootstocks in citriculture worldwide, but its cytogenetic study has been hampered by its inherent small size, morphological similarity to mitotic chromosomes, and lack of accessible cytological landmarks. In our previous study, a spontaneously occurring tetraploid CC seedling was discovered. The main goals of this study were to elucidate the chromosome constitution and construct the karyotypes of diploid CC rootstock and its corresponding spontaneously occurring tetraploid. To accomplish these, the chromosomal characteristics were investigated by sequential multicolor fluorescence in situ hybridization (FISH) with eight properly labeled repetitive DNA sequences, including a centromere-like repeat, four satellite repeats, two rDNAs, and an oligonucleotide of telomeric (TTTAGGG) n repeat. The results nicely demonstrated that these repetitive DNAs are reliable cytogenetic markers that collectively facilitate simultaneous and unequivocal identification of homologous chromosome pairs. Based on chromosome size and morphology together with FISH patterns of repetitive DNAs, an integrated karyotype of CC rootstock was constructed, consisting of 2n = 2x = 12m (1sat) + 6sm with karyotype asymmetry degree being divided into 2B category. Cytogenetically speaking, the variable and asymmetric distribution patterns of these repetitive DNAs were fully confirmed the hybrid nature of CC rootstock. In addition, comparative distribution patterns and chromosomal localizations of these repetitive DNAs convincingly showed that this tetraploid CC material arose from somatic chromosome doubling of diploid CC rootstock. This study revealed, for the first time, the integrated karyotype and chromosomal characteristics of this important citrus rootstock as well as its spontaneously occurring tetraploid plant. Furthermore, this study is a good prospective model for study species with morphologically indistinguishable small chromosomes.
RESUMEN
Tarim red deer (Cervus elaphus yarkandensis) is the only subspecies of red deer (of 22 subspecies) from Central Asia. This species is a desert dweller of the Tarim Basin of southern Xinjiang, China, and exhibits some unique adaptations to the dry and extreme hot climate. We report here the assembly of a Tarim red deer genome employing a 10X Genomics library, termed CEY_v1. Our genome consisted of 2.6 Gb with contig N50 and scaffold N50 of 275.5 Kb and 31.7 Mb, respectively. Around 96% of the assembled sequences were anchored onto 34 chromosomes based on the published high-quality red deer genetic linkage map. More than 94% BUSCOs complete genes (including 90.5% single and 3.6% duplicated ones) were detected in the CEY_v1 and 20,653 genes were annotated. The CEY_v1 is expected to contribute to comparative analysis of genome biology, to evolutionary studies within Cervidae, and to facilitating investigation of mechanisms underlying adaptation of this species to the extreme dry and hot climate.
Asunto(s)
Mapeo Cromosómico , Ciervos/genética , Genoma , Adaptación Biológica , Animales , China , Clima , Ligamiento Genético , Anotación de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADNRESUMEN
BACKGROUND: Production and health traits are central in cattle breeding. Advances in next-generation sequencing technologies and genotype imputation have increased the resolution of gene mapping based on genome-wide association studies (GWAS). Thus, numerous candidate genes that affect milk yield, milk composition, and mastitis resistance in dairy cattle are reported in the literature. Effect-bearing variants often affect multiple traits. Because the detection of overlapping quantitative trait loci (QTL) regions from single-trait GWAS is too inaccurate and subjective, multi-trait analysis is a better approach to detect pleiotropic effects of variants in candidate genes. However, large sample sizes are required to achieve sufficient power. Multi-trait meta-analysis is one approach to deal with this problem. Thus, we performed two multi-trait meta-analyses, one for three milk production traits (milk yield, protein yield and fat yield), and one for milk yield and mastitis resistance. RESULTS: For highly correlated traits, the power to detect pleiotropy was increased by multi-trait meta-analysis compared with the subjective assessment of overlapping of single-trait QTL confidence intervals. Pleiotropic effects of lead single nucleotide polymorphisms (SNPs) that were detected from the multi-trait meta-analysis were confirmed by bivariate association analysis. The previously reported pleiotropic effects of variants within the DGAT1 and MGST1 genes on three milk production traits, and pleiotropic effects of variants in GHR on milk yield and fat yield were confirmed. Furthermore, our results suggested that variants in KCTD16, KCNK18 and ENSBTAG00000023629 had pleiotropic effects on milk production traits. For milk yield and mastitis resistance, we identified possible pleiotropic effects of variants in two genes, GC and DGAT1. CONCLUSIONS: Multi-trait meta-analysis improves our ability to detect pleiotropic interactions between milk production traits and identifies variants with pleiotropic effects on milk production traits and mastitis resistance. In particular, this should contribute to better understand the biological mechanisms that underlie the unfavorable genetic correlation between milk yield and mastitis.
Asunto(s)
Bovinos/genética , Pleiotropía Genética , Estudio de Asociación del Genoma Completo , Lactancia/genética , Mastitis Bovina/prevención & control , Leche/metabolismo , Sitios de Carácter Cuantitativo/genética , Animales , Cruzamiento , Mapeo Cromosómico , Femenino , Genotipo , Mastitis Bovina/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genéticaRESUMEN
Quantile regression is a flexible and effective tool for modeling survival data and its relationship with important covariates, which often vary over time. Informative right censoring of data from the prevalent cohort within the population often results in length-biased observations. We propose an estimating equation-based approach to obtain consistent estimators of the regression coefficients of interest based on length-biased observations with time-dependent covariates. In addition, inspired by Zeng and Lin 2008, we also develop a more numerically stable procedure for variance estimation. Large sample properties including consistency and asymptotic normality of the proposed estimator are established. Numerical studies presented demonstrate convincing performance of the proposed estimator under various settings. The application of the proposed method is demonstrated using the Oscar dataset.