Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 19(7)2018 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-29973510

RESUMEN

For many years, it was of interest to identify the sequences encoding the two melatonin receptors (MT1 and MT2) from various species. After publishing the basic molecular characterization of the human, rat, mouse, sheep, and platypus MT1, MT2, or Mel1c receptors, we began cloning the genes from other animals, such as birds, bats, and vipers. The goal was to advance the receptor crystallization, which could greatly contribute the understanding of the sequence/stability relationship. European hamster MT1 receptor was cloned for the first time from this gender, was expressed in stable form in cells, and its binding characterized with a sample of 19 melatonin ligands. Siberian hamster (Phodopus sungorus) expresses a non-functional MT2. We observed that unlike this hamster, the European hamster (Cricetus cricetus) does not have a stop codon in the MT2 sequence. Thus, we undertook the tedious task of cloning the MT2 receptor. We partially succeeded, sequencing the complete exon 2 and a fragment of exon 1 (from putative amino acids 12 to 38 and 77 to 323), after several years of efforts. In order to show that the protein parts we cloned were capable to sustain some binding capacities, we designed a chimeric MT2 receptor using a consensus sequence to replace the unknown amino acids, based on other small rodent MT2 sequences. This chimeric construct could bind melatonin in the nanomolar range. This work is meant to be the basis for attempts from other laboratories of the community to determine the complete natural sequence of the European hamster MT2 receptor. The present work is the first to show that, among the hamsters, if the Siberian is a natural knockout for MT2, the European one is not.


Asunto(s)
Cricetinae/genética , Melatonina/metabolismo , Receptor de Melatonina MT1/genética , Receptor de Melatonina MT2/genética , Secuencia de Aminoácidos , Animales , Línea Celular , Clonación Molecular , Codón de Terminación , Exones , Ligandos , Masculino , Unión Proteica , Alineación de Secuencia , Análisis de Secuencia de ADN
2.
Am J Physiol Heart Circ Physiol ; 311(1): H44-53, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27199128

RESUMEN

Cardiomyocytes derived from human embryonic stem cells (hESCs) or induced pluripotent stem cells (hiPSCs) are increasingly used for in vitro assays and represent an interesting opportunity to increase the data throughput for drug development. In this work, we describe a 96-well recording of synchronous electrical activities from spontaneously beating hiPSC-derived cardiomyocyte monolayers. The signal was obtained with a fast-imaging plate reader using a submillisecond-responding membrane potential recording assay, FluoVolt, based on a newly derived voltage-sensitive fluorescent dye. In our conditions, the toxicity of the dye was moderate and compatible with episodic recordings for >3 h. We show that the waveforms recorded from a whole well or from a single cell-sized zone are equivalent and make available critical functional parameters that are usually accessible only with gold standard techniques like intracellular microelectrode recording. This approach allows accurate identification of the electrophysiological effects of reference drugs on the different phases of the cardiac action potential as follows: fast depolarization (lidocaine), early repolarization (nifedipine, Bay K8644, and veratridine), late repolarization (dofetilide), and diastolic slow depolarization (ivabradine). Furthermore, the data generated with the FluoVolt dye can be pertinently complemented with a calcium-sensitive dye for deeper characterization of the pharmacological responses. In a semiautomated plate reader, the two probes used simultaneously in 96-well plates provide an easy and powerful multiparametric assay to rapidly and precisely evaluate the cardiotropic profile of compounds for drug discovery or cardiac safety.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Colorantes Fluorescentes/metabolismo , Ensayos Analíticos de Alto Rendimiento , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Automatización de Laboratorios , Línea Celular , Relación Dosis-Respuesta a Droga , Colorantes Fluorescentes/toxicidad , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Microscopía Fluorescente , Miocitos Cardíacos/metabolismo , Procesamiento de Señales Asistido por Computador , Factores de Tiempo
3.
Br J Pharmacol ; 171(1): 186-201, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24117008

RESUMEN

BACKGROUND AND PURPOSE: Melatonin receptors have been extensively characterized regarding their affinity and pharmacology, mostly using 2-[(125)I]-melatonin as a radioligand. Although [(3)H]-melatonin has the advantage of corresponding to the endogenous ligand of the receptor, its binding has not been well described. EXPERIMENTAL APPROACH: We characterized [(3)H]-melatonin binding to the hMT1 and hMT2 receptors expressed in a range of cell lines and obtained new insights into the molecular pharmacology of melatonin receptors. KEY RESULTS: The binding of [(3)H]-melatonin to the hMT1 and hMT2 receptors displayed two sites on the saturation curves. These two binding sites were observed on cell membranes expressing recombinant receptors from various species as well as on whole cells. Furthermore, our GTPγS/NaCl results suggest that these sites on the saturation curves correspond to the G-protein coupled and uncoupled states of the receptors, whose pharmacology was extensively characterized. CONCLUSIONS AND IMPLICATIONS: hMT1 and hMT2 receptors spontaneously exist in two states when expressed in cell lines; these states can be probed by [(3)H]-melatonin binding. Overall, our results suggest that physiological regulation of the melatonin receptors may result from complex and subtle mechanisms, a small difference in affinity between the active and inactive states of the receptor, and spontaneous coupling to G-proteins.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Melatonina/metabolismo , Receptor de Melatonina MT2/metabolismo , Animales , Sitios de Unión , Células CHO , Línea Celular Tumoral , Cricetinae , Cricetulus , Relación Dosis-Respuesta a Droga , Guanosina 5'-O-(3-Tiotrifosfato)/farmacología , Células HEK293 , Humanos , Cinética , Ligandos , Ratones , Datos de Secuencia Molecular , Ensayo de Unión Radioligante , Ratas , Receptor de Melatonina MT2/efectos de los fármacos , Receptor de Melatonina MT2/genética , Ovinos , Cloruro de Sodio/farmacología , Especificidad de la Especie , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...