Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Elife ; 102021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33860766

RESUMEN

KASH proteins in the outer nuclear membrane comprise the cytoplasmic half of linker of nucleoskeleton and cytoskeleton (LINC) complexes that connect nuclei to the cytoskeleton. Caenorhabditis elegans ANC-1, an ortholog of Nesprin-1/2, contains actin-binding and KASH domains at opposite ends of a long spectrin-like region. Deletion of either the KASH or calponin homology (CH) domains does not completely disrupt nuclear positioning, suggesting neither KASH nor CH domains are essential. Deletions in the spectrin-like region of ANC-1 led to significant defects, but only recapitulated the null phenotype in combination with mutations in the transmembrane (TM) span. In anc-1 mutants, the endoplasmic reticulum ER, mitochondria, and lipid droplets were unanchored, moving throughout the cytoplasm. The data presented here support a cytoplasmic integrity model where ANC-1 localizes to the ER membrane and extends into the cytoplasm to position nuclei, ER, mitochondria, and other organelles in place.


Asunto(s)
Actinas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas Nucleares/metabolismo , Orgánulos/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Unión al Calcio/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Gotas Lipídicas/metabolismo , Proteínas de Microfilamentos/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Movimiento , Orgánulos/genética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transducción de Señal , Calponinas
2.
Curr Biol ; 28(19): 3086-3097.e4, 2018 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-30245107

RESUMEN

Many nuclear positioning events involve linker of nucleoskeleton and cytoskeleton (LINC) complexes, which transmit forces generated by the cytoskeleton across the nuclear envelope. LINC complexes are formed by trans-luminal interactions between inner nuclear membrane SUN proteins and outer nuclear membrane KASH proteins, but how these interactions are regulated is poorly understood. We combine in vivo C. elegans genetics, in vitro wounded fibroblast polarization, and in silico molecular dynamics simulations to elucidate mechanisms of LINC complexes. The extension of the KASH domain by a single alanine residue or the mutation of the conserved tyrosine at -7 completely blocked the nuclear migration function of C. elegans UNC-83. Analogous mutations at -7 of mouse nesprin-2 disrupted rearward nuclear movements in NIH 3T3 cells, but did not disrupt ANC-1 in nuclear anchorage. Furthermore, conserved cysteines predicted to form a disulfide bond between SUN and KASH proteins are important for the function of certain LINC complexes, and might promote a developmental switch between nuclear migration and nuclear anchorage. Mutations of conserved cysteines in SUN or KASH disrupted ANC-1-dependent nuclear anchorage in C. elegans and Nesprin-2G-dependent nuclear movements in polarizing fibroblasts. However, the SUN cysteine mutation did not disrupt nuclear migration. Moreover, molecular dynamics simulations showed that a disulfide bond is necessary for the maximal transmission of cytoskeleton-generated forces by LINC complexes in silico. Thus, we have demonstrated functions for SUN-KASH binding interfaces, including a predicted intermolecular disulfide bond, as mechanistic determinants of nuclear positioning that may represent targets for regulation.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Secuencia de Aminoácidos , Animales , Transporte Biológico , Caenorhabditis elegans/metabolismo , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Microtúbulos/metabolismo , Células 3T3 NIH , Matriz Nuclear/metabolismo , Estructura Terciaria de Proteína , Transporte de Proteínas/fisiología
3.
Methods Mol Biol ; 1840: 163-180, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30141045

RESUMEN

Studying nuclear positioning in developing tissues of the model nematode Caenorhabditis elegans greatly contributed to the discovery of SUN and KASH proteins and the formation of the LINC model. Such studies continue to make important contributions into both how LINC complexes are regulated and how defects in LINC components disrupt normal development. The methods described explain how to observe and quantify the following: nuclear migration in embryonic dorsal hypodermal cells, nuclear migration through constricted spaces in larval P cells, nuclear positioning in the embryonic intestinal primordia, and nuclear anchorage in syncytial hypodermal cells. These methods will allow others to employ nuclear positioning in C. elegans as a model to further explore LINC complex regulation and function.


Asunto(s)
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Animales , Biomarcadores , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Neuronas GABAérgicas/metabolismo , Membrana Nuclear/metabolismo
4.
Development ; 143(22): 4193-4202, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27697906

RESUMEN

Cellular migrations through constricted spaces are a crucial aspect of many developmental and disease processes including hematopoiesis, inflammation and metastasis. A limiting factor in these events is nuclear deformation. Here, we establish an in vivo model in which nuclei can be visualized while moving through constrictions and use it to elucidate mechanisms for nuclear migration. C. elegans hypodermal P-cell larval nuclei traverse a narrow space that is about 5% their width. This constriction is blocked by fibrous organelles, structures that pass through P cells to connect the muscles to cuticle. Fibrous organelles are removed just prior to nuclear migration, when nuclei and lamins undergo extreme morphological changes to squeeze through the space. Both actin and microtubule networks are organized to mediate nuclear migration. The LINC complex, consisting of the SUN protein UNC-84 and the KASH protein UNC-83, recruits dynein and kinesin-1 to the nuclear surface. Both motors function in P-cell nuclear migration, but dynein, functioning through UNC-83, plays a more central role as nuclei migrate towards minus ends of polarized microtubule networks. Thus, the nucleoskeleton and cytoskeleton are coordinated to move nuclei through constricted spaces.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Caenorhabditis elegans , Núcleo Celular/metabolismo , Dermis/embriología , Dermis/metabolismo , Microtúbulos/metabolismo , Actinas/metabolismo , Animales , Animales Modificados Genéticamente , Transporte Biológico , Tipificación del Cuerpo , Caenorhabditis elegans/citología , Caenorhabditis elegans/embriología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Citoesqueleto/metabolismo , Dermis/ultraestructura , Embrión no Mamífero
5.
Nucleus ; 6(1): 2-7, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25425085

RESUMEN

The nuclear envelope consists of 2 membranes separated by 30-50 nm, but how the 2 membranes are evenly spaced has been an open question in the field. Nuclear envelope bridges composed of inner nuclear membrane SUN proteins and outer nuclear membrane KASH proteins have been proposed to set and regulate nuclear envelope spacing. We tested this hypothesis directly by examining nuclear envelope spacing in Caenorhabditis elegans animals lacking UNC-84, the sole somatic SUN protein. SUN/KASH bridges are not required to maintain even nuclear envelope spacing in most tissues. However, UNC-84 is required for even spacing in body wall muscle nuclei. Shortening UNC-84 by 300 amino acids did not narrow the nuclear envelope space. While SUN proteins may play a role in maintaining nuclear envelope spacing in cells experiencing forces, our data suggest they are dispensable in most cells.


Asunto(s)
Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Animales , Enfermedad , Humanos
6.
J Cell Biol ; 206(2): 163-72, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-25023515

RESUMEN

The nuclear envelope (NE) consists of two evenly spaced bilayers, the inner and outer nuclear membranes. The Sad1p and UNC-84 (SUN) proteins and Klarsicht, ANC-1, and Syne homology (KASH) proteins that interact to form LINC (linker of nucleoskeleton and cytoskeleton) complexes connecting the nucleoskeleton to the cytoskeleton have been implicated in maintaining NE spacing. Surprisingly, the NE morphology of most Caenorhabditis elegans nuclei was normal in the absence of functional SUN proteins. Distortions of the perinuclear space observed in unc-84 mutant muscle nuclei resembled those previously observed in HeLa cells, suggesting that SUN proteins are required to maintain NE architecture in cells under high mechanical strain. The UNC-84 protein with large deletions in its luminal domain was able to form functional NE bridges but had no observable effect on NE architecture. Therefore, SUN-KASH bridges are only required to maintain NE spacing in cells subjected to increased mechanical forces. Furthermore, SUN proteins do not dictate the width of the NE.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Glicoproteínas de Membrana/fisiología , Membrana Nuclear/metabolismo , Proteínas Nucleares/fisiología , Estrés Fisiológico , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Membrana Nuclear/ultraestructura , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estimulación Física
7.
Mol Biol Cell ; 22(11): 1919-29, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21471002

RESUMEN

Intracellular trafficking of the general amino acid permease, Gap1p, of Saccharomyces cerevisiae is regulated by amino acid abundance. When amino acids are scarce Gap1p is sorted to the plasma membrane, whereas when amino acids are abundant Gap1p is sorted from the trans-Golgi through the multivesicular endosome (MVE) and to the vacuole. Here we test the hypothesis that Gap1p itself is the sensor of amino acid abundance by examining the trafficking of Gap1p mutants with altered substrate specificity and transport activity. We show that trafficking of mutant Gap1p(A297V), which does not transport basic amino acids, is also not regulated by these amino acids. Furthermore, we have identified a catalytically inactive mutant that does not respond to complex amino acid mixtures and constitutively sorts Gap1p to the plasma membrane. Previously we showed that amino acids govern the propensity of Gap1p to recycle from the MVE to the plasma membrane. Here we propose that in the presence of substrate the steady-state conformation of Gap1p shifts to a state that is unable to be recycled from the MVE. These results indicate a parsimonious regulatory mechanism by which Gap1p senses its transport substrates to set an appropriate level of transporter activity at the cell surface.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Sistemas de Transporte de Aminoácidos/genética , Membrana Celular/metabolismo , Cuerpos Multivesiculares/metabolismo , Proteínas Mutantes/metabolismo , Mutación Missense , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Eliminación de Secuencia
8.
Mol Biol Cell ; 17(10): 4411-9, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16885415

RESUMEN

The general amino acid permease, Gap1p, of Saccharomyces cerevisiae transports all naturally occurring amino acids into yeast cells for use as a nitrogen source. Previous studies have shown that a nonubiquitinateable form of the permease, Gap1p(K9R,K16R), is constitutively localized to the plasma membrane. Here, we report that amino acid transport activity of Gap1p(K9R,K16R) can be rapidly and reversibly inactivated at the plasma membrane by the presence of amino acid mixtures. Surprisingly, we also find that addition of most single amino acids is lethal to Gap1p(K9R,K16R)-expressing cells, whereas mixtures of amino acids are less toxic. This toxicity appears to be the consequence of uptake of unusually large quantities of a single amino acid. Exploiting this toxicity, we isolated gap1 alleles deficient in transport of a subset of amino acids. Using these mutations, we show that Gap1p inactivation at the plasma membrane does not depend on the presence of either extracellular or intracellular amino acids, but does require active amino acid transport by Gap1p. Together, our findings uncover a new mechanism for inhibition of permease activity in response to elevated amino acid levels and provide a physiological explanation for the stringent regulation of Gap1p activity in response to amino acids.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/farmacocinética , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Aminoácidos/toxicidad , Membrana Celular/enzimología , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Transporte de Proteínas/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...