Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Mol Neurosci ; 17: 1370509, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38685916

RESUMEN

Targeted protein degradation (TPD) is a rapidly expanding field, with various PROTACs (proteolysis-targeting chimeras) in clinical trials and molecular glues such as immunomodulatory imide drugs (IMiDs) already well established in the treatment of certain blood cancers. Many current approaches are focused on oncology targets, leaving numerous potential applications underexplored. Targeting proteins for degradation offers a novel therapeutic route for targets whose inhibition remains challenging, such as protein aggregates in neurodegenerative diseases. This mini review focuses on the prospect of utilizing TPD for neurodegenerative disease targets, particularly PROTAC and molecular glue formats and opportunities for novel CNS E3 ligases. Some key challenges of utilizing such modalities including molecular design of degrader molecules, drug delivery and blood brain barrier penetrance will be discussed.

2.
Biomolecules ; 11(11)2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34827685

RESUMEN

Animal models of Parkinson's disease, in which the human α-synuclein transgene is overexpressed in the nigrostriatal pathway using viral vectors, are widely considered to be the most relevant models of the human condition. However, although highly valid, these models have major limitations related to reliability and variability, with many animals exhibiting pronounced α-synuclein expression failing to demonstrate nigrostriatal neurodegeneration or motor dysfunction. Therefore, the aim of this study was to determine if sequential intra-nigral administration of AAV-α-synuclein followed by the small α-synuclein aggregating molecule, FN075, would enhance or precipitate the associated α-synucleinopathy, nigrostriatal pathology and motor dysfunction in subclinical models. Rats were given unilateral intra-nigral injections of AAV-α-synuclein (either wild-type or A53T mutant) followed four weeks later by a unilateral intra-nigral injection of FN075, after which they underwent behavioral testing for lateralized motor functionality until they were sacrificed for immunohistological assessment at 20 weeks after AAV administration. In line with expectations, both of the AAV vectors induced widespread overexpression of human α-synuclein in the substantia nigra and striatum. Sequential administration of FN075 significantly enhanced the α-synuclein pathology with increased density and accumulation of the pathological form of the protein phosphorylated at serine 129 (pS129-α-synuclein). However, despite this enhanced α-synuclein pathology, FN075 did not precipitate nigrostriatal degeneration or motor dysfunction in these subclinical AAV models. In conclusion, FN075 holds significant promise as an approach to enhancing the α-synuclein pathology in viral overexpression models, but further studies are required to determine if alternative administration regimes for this molecule could improve the reliability and variability in these models.


Asunto(s)
Sinucleinopatías , alfa-Sinucleína , Animales , Ratas , Reproducibilidad de los Resultados
3.
Methods Mol Biol ; 2275: 87-117, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34118033

RESUMEN

Small molecules can be physicochemically targeted to the mitochondrial matrix using the lipophilic alkyltriphenylphosphonium (TPP) group. Once in the mitochondria the TPP conjugate can detect or influence processes within the mitochondrial matrix directly. Alternatively, the conjugate can behave as a prodrug, which is activated by release from the TPP group either using an internal or external instruction. Small molecules can be designed that can be used in any cell line, tissue, or whole organism, allow for temporal control, and can be applied in a reversible dose-dependent fashion. An example is the detection and quantification of hydrogen peroxide in mitochondria of whole living organisms by MitoB. Hydrogen peroxide produced within the mitochondrial matrix is involved in signaling and implicated in the oxidative damage associated with aging and a wide range of conditions including cardiovascular disease, neurodegeneration, and cancer. MitoB accumulates in mitochondria and is converted into the exomarker, MitoP, by hydrogen peroxide in the mitochondrial matrix. The hydrogen peroxide concentration is determined from the ratio of MitoP to MitoB after a period of incubation, and this ratio is determined by mass spectrometry using d15-MitoP and d15-MitoB as internal standards. Here we discuss the targeting of small molecules to the mitochondrial matrix using TPP, and describe the synthesis of MitoB and MitoP and the deuterated standards necessary for quantification of hydrogen peroxide in the mitochondrial matrix of whole living organisms.


Asunto(s)
Peróxido de Hidrógeno/análisis , Mitocondrias/metabolismo , Compuestos Organofosforados/síntesis química , Animales , Humanos , Espectrometría de Masas , Estructura Molecular , Compuestos Organofosforados/análisis , Compuestos Organofosforados/química , Compuestos Organofosforados/farmacología , Estrés Oxidativo , Fenoles/análisis , Fenoles/síntesis química , Fenoles/química , Fenoles/farmacología , Profármacos/síntesis química , Profármacos/química , Profármacos/farmacología
4.
ACS Cent Sci ; 5(7): 1289-1294, 2019 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-31403077

RESUMEN

Here, we report that wild type Escherichia coli ribosomes accept and elongate precharged initiator tRNAs acylated with multiple benzoic acids, including aramid precursors, as well as malonyl (1,3-dicarbonyl) substrates to generate a diverse set of aramid-peptide and polyketide-peptide hybrid molecules. This work expands the scope of ribozyme- and ribosome-catalyzed chemical transformations, provides a starting point for in vivo translation engineering efforts, and offers an alternative strategy for the biosynthesis of polyketide-peptide natural products.

5.
Org Lett ; 21(17): 6946-6950, 2019 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-31419146

RESUMEN

We report the synthesis of 6-arylthio-substituted-N-alkenyl 2-pyridones by ring opening of bicyclic thiazolino-2-pyridones with arynes. Varied functionalization was used to investigate scope and substituent influences on reactivity. Selected conditions favor thioether ring opening over [4 + 2] cycloaddition and an unusual aryne incorporating ring expansion. Deuterium labeling was used to clarify observed reactivity. Using the knowledge, we produced drug-like molecules with complex substitution patterns and show how thioether ring opening can be used on scaffolds with competing reactivities.


Asunto(s)
Derivados del Benceno/química , Piridonas/síntesis química , Tiazoles/química , Reacción de Cicloadición , Estructura Molecular , Piridonas/química
6.
Proc Natl Acad Sci U S A ; 116(21): 10510-10517, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31061116

RESUMEN

Mycobacterium tuberculosis (Mtb) killed more people in 2017 than any other single infectious agent. This dangerous pathogen is able to withstand stresses imposed by the immune system and tolerate exposure to antibiotics, resulting in persistent infection. The global tuberculosis (TB) epidemic has been exacerbated by the emergence of mutant strains of Mtb that are resistant to frontline antibiotics. Thus, both phenotypic drug tolerance and genetic drug resistance are major obstacles to successful TB therapy. Using a chemical approach to identify compounds that block stress and drug tolerance, as opposed to traditional screens for compounds that kill Mtb, we identified a small molecule, C10, that blocks tolerance to oxidative stress, acid stress, and the frontline antibiotic isoniazid (INH). In addition, we found that C10 prevents the selection for INH-resistant mutants and restores INH sensitivity in otherwise INH-resistant Mtb strains harboring mutations in the katG gene, which encodes the enzyme that converts the prodrug INH to its active form. Through mechanistic studies, we discovered that C10 inhibits Mtb respiration, revealing a link between respiration homeostasis and INH sensitivity. Therefore, by using C10 to dissect Mtb persistence, we discovered that INH resistance is not absolute and can be reversed.


Asunto(s)
Antituberculosos/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Isoniazida , Mycobacterium tuberculosis/efectos de los fármacos , Evaluación Preclínica de Medicamentos
7.
Brain Behav Immun ; 80: 525-535, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31029796

RESUMEN

Evidence is accumulating to suggest that viral infections and consequent viral-mediated neuroinflammation may contribute to the etiology of idiopathic Parkinson's disease. Moreover, viruses have been shown to influence α-synuclein oligomerization as well as the autophagic clearance of abnormal intra-cellular proteins aggregations, both of which are key neuropathological events in Parkinson's disease pathogenesis. To further investigate the interaction between viral-mediated neuroinflammation and α-synuclein aggregation in the context of Parkinson's disease, this study sought to determine the impact of viral neuroinflammatory priming on α-synuclein aggregate-induced neuroinflammation and neurotoxicity in the rat nigrostriatal pathway. To do so, male Sprague-Dawley rats were intra-nigrally injected with a synthetic mimetic of viral dsRNA (poly I:C) followed two weeks later by a peptidomimetic small molecule which accelerates α-synuclein fibril formation (FN075). The impact of the viral priming on α-synuclein aggregation-induced neuroinflammation, neurodegeneration and motor dysfunction was assessed. We found that prior administration of the viral mimetic poly I:C significantly exacerbated or precipitated the α-synuclein aggregate induced neuropathological and behavioral effects. Specifically, sequential exposure to the two challenges caused a significant increase in nigral microgliosis (p < 0.001) and astrocytosis (p < 0.01); precipitated a significant degeneration of the nigrostriatal cell bodies (p < 0.05); and precipitated a significant impairment in forelimb kinesis (p < 0.01) and sensorimotor integration (p < 0.01). The enhanced sensitivity of the nigrostriatal neurons to pathological α-synuclein aggregation after viral neuroinflammatory priming further suggests that viral infections may contribute to the etiology and pathogenesis of Parkinson's disease.


Asunto(s)
Enfermedad de Parkinson/etiología , Poli I-C/efectos adversos , alfa-Sinucleína/metabolismo , Animales , Materiales Biomiméticos , Cuerpo Estriado/metabolismo , Dependovirus/genética , Modelos Animales de Enfermedad , Vectores Genéticos , Gliosis/metabolismo , Masculino , Actividad Motora/efectos de los fármacos , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/fisiopatología , Neuroinmunomodulación/fisiología , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/fisiopatología , Poli I-C/administración & dosificación , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/virología , Ratas , Ratas Sprague-Dawley , Sustancia Negra/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , alfa-Sinucleína/fisiología
8.
J Org Chem ; 84(7): 3887-3903, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30862161

RESUMEN

We here describe the use of three-component reactions to synthesize tricyclic pyridine ring-fused 2-pyridones. The developed protocols have a wide substrate scope and allow for the installation of diverse chemical functionalities on the tricyclic central fragment. Several of these pyridine-fused rigid polyheterocycles are shown to bind to Aß and α-synuclein fibrils, which are associated with neurodegenerative diseases.


Asunto(s)
Amiloide/química , Compuestos Heterocíclicos de Anillo en Puente/síntesis química , Piridinas/síntesis química , Piridonas/síntesis química , Compuestos Bicíclicos Heterocíclicos con Puentes , Compuestos Heterocíclicos de Anillo en Puente/química , Piridinas/química , Piridonas/química , Relación Estructura-Actividad , Estirenos/química
9.
Medchemcomm ; 10(11): 1966-1987, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32206238

RESUMEN

Chlamydia trachomatis infections are a global health problem and new approaches to treat C. trachomatis with drugs of high specificity would be valuable. A library of substituted ring fused 2-pyridones has been synthesized and evaluated for their ability to attenuate C. trachomatis infectivity. In vivo pharmacokinetic studies were performed, with the best candidates demonstrating that a C8-methylsulfonamide substituent improved pharmacokinetic properties important for oral administration. C8-Methyl sulfonamide analogue 30 inhibited C. trachomatis infectivity in low micromolar concentrations. Further pharmacokinetic evaluation at an oral dose of 10 mg kg-1 showed an apparent bioavailability of 41%, compared to C8-cyclopropyl and -methoxy analogues which had negligible oral uptake. In vitro ADME (absorption, distribution, metabolism and excretion) testing of solubility and Caco-2 cell permeability revealed that both solubility and permeability is greatly improved with the C8-methyl sulfonamide 30, effectively moving it from BCS (Biopharmaceutical Classification System) class IV to II.

10.
ACS Chem Neurosci ; 9(11): 2542-2547, 2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29901990

RESUMEN

Previous work in our laboratories has identified a series of peptidomimetic 2-pyridone molecules as modulators of alpha-synuclein (α-syn) fibrillization in vitro. As a first step toward developing molecules from this scaffold as positron emission tomography imaging agents, we were interested in evaluating their blood-brain barrier permeability in nonhuman primates (NHP) in vivo. For this purpose, 2-pyridone 12 was prepared and found to accelerate α-syn fibrillization in vitro. Acid 12, and its acetoxymethyl ester analogue 14, were then radiolabeled with 11C ( t1/2 = 20.4 min) at high radiochemical purity (>99%) and high specific radioactivity (>37 GBq/µmol). Following intravenous injection of each compound in NHP, a 4-fold higher radioactivity in brain was observed for [11C]14 compared to [11C]12 (0.8 vs 0.2 SUV, respectively). [11C]14 was rapidly eliminated from plasma, with [11C]12 as the major metabolic product observed by radio-HPLC. The presented prodrug approach paves the way for future development of 2-pyridones as imaging biomarkers for in vivo imaging of α-synuclein deposits in brain.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Ésteres/farmacología , Peptidomiméticos/farmacología , Profármacos/farmacología , Piridonas/farmacología , Tiazoles/farmacología , alfa-Sinucleína/efectos de los fármacos , Animales , Encéfalo/diagnóstico por imagen , Radioisótopos de Carbono , Ésteres/química , Macaca mulatta , Peptidomiméticos/química , Tomografía de Emisión de Positrones , Piridonas/química , Tiazoles/química , alfa-Sinucleína/metabolismo
11.
J Med Chem ; 61(9): 4165-4175, 2018 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-29667825

RESUMEN

Listeria monocytogenes is a bacterial pathogen that controls much of its virulence through the transcriptional regulator PrfA. In this study, we describe structure-guided design and synthesis of a set of PrfA inhibitors based on ring-fused 2-pyridone heterocycles. Our most effective compound decreased virulence factor expression, reduced bacterial uptake into eukaryotic cells, and improved survival of chicken embryos infected with L. monocytogenes compared to previously identified compounds. Crystal structures identified an intraprotein "tunnel" as the main inhibitor binding site (AI), where the compounds participate in an extensive hydrophobic network that restricts the protein's ability to form functional DNA-binding helix-turn-helix (HTH) motifs. Our studies also revealed a hitherto unsuspected structural plasticity of the HTH motif. In conclusion, we have designed 2-pyridone analogues that function as site-AI selective PrfA inhibitors with potent antivirulence properties.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Diseño de Fármacos , Listeria monocytogenes/efectos de los fármacos , Listeria monocytogenes/metabolismo , Factores de Terminación de Péptidos/antagonistas & inhibidores , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Embrión de Pollo , Listeria monocytogenes/patogenicidad , Modelos Moleculares , Factores de Terminación de Péptidos/química , Factores de Terminación de Péptidos/metabolismo , Conformación Proteica , Virulencia/efectos de los fármacos
12.
Cell Chem Biol ; 24(10): 1285-1298.e12, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-28890317

RESUMEN

Mitochondrial superoxide (O2⋅-) underlies much oxidative damage and redox signaling. Fluorescent probes can detect O2⋅-, but are of limited applicability in vivo, while in cells their usefulness is constrained by side reactions and DNA intercalation. To overcome these limitations, we developed a dual-purpose mitochondrial O2⋅- probe, MitoNeoD, which can assess O2⋅- changes in vivo by mass spectrometry and in vitro by fluorescence. MitoNeoD comprises a O2⋅--sensitive reduced phenanthridinium moiety modified to prevent DNA intercalation, as well as a carbon-deuterium bond to enhance its selectivity for O2⋅- over non-specific oxidation, and a triphenylphosphonium lipophilic cation moiety leading to the rapid accumulation within mitochondria. We demonstrated that MitoNeoD was a versatile and robust probe to assess changes in mitochondrial O2⋅- from isolated mitochondria to animal models, thus offering a way to examine the many roles of mitochondrial O2⋅- production in health and disease.


Asunto(s)
Mitocondrias/metabolismo , Sondas Moleculares/metabolismo , Superóxidos/metabolismo , Animales , Transporte Biológico , Línea Celular , ADN/química , ADN/metabolismo , Masculino , Espectrometría de Masas , Ratones , Modelos Moleculares , Sondas Moleculares/química , Conformación de Ácido Nucleico , Oxidación-Reducción
13.
Sci Rep ; 7: 41228, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-28117373

RESUMEN

In recent years evolutionary ecologists have become increasingly interested in the effects of reactive oxygen species (ROS) on the life-histories of animals. ROS levels have mostly been inferred indirectly due to the limitations of estimating ROS from in vitro methods. However, measuring ROS (hydrogen peroxide, H2O2) content in vivo is now possible using the MitoB probe. Here, we extend and refine the MitoB method to make it suitable for ecological studies of oxidative stress using the brown trout Salmo trutta as model. The MitoB method allows an evaluation of H2O2 levels in living organisms over a timescale from hours to days. The method is flexible with regard to the duration of exposure and initial concentration of the MitoB probe, and there is no transfer of the MitoB probe between fish. H2O2 levels were consistent across subsamples of the same liver but differed between muscle subsamples and between tissues of the same animal. The MitoB method provides a convenient method for measuring ROS levels in living animals over a significant period of time. Given its wide range of possible applications, it opens the opportunity to study the role of ROS in mediating life history trade-offs in ecological settings.


Asunto(s)
Ecología/métodos , Peróxido de Hidrógeno/análisis , Mitocondrias/metabolismo , Compuestos Organofosforados/administración & dosificación , Estrés Oxidativo , Especies Reactivas de Oxígeno/análisis , Animales , Mitocondrias/efectos de los fármacos , Fenoles/administración & dosificación , Trucha
14.
Org Lett ; 18(24): 6228-6231, 2016 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-27978656

RESUMEN

Regio- and stereoselective addition of alkyl Grignard reagents to pyridine-N-oxides gave C2-alkylated N-hydroxy-1,2,5,6-tetrahydropyridines and trans-2,3-disubstituted N-hydroxy-1,2,5,6-tetrahydropyridines in good to excellent yields. These intermediates were aromatized or alternatively reduced in one-pot methodologies for efficient syntheses of alkylpyridines or piperidines, respectively. These reactions have a broad substrate scope and short reaction times.

15.
Tetrahedron ; 71(51): 9571-9578, 2015 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-26709317

RESUMEN

Changes in high localised concentrations of Ca2+ ions are fundamental to cell signalling. The synthesis of a dual excitation, ratiometric calcium ion sensor with a Kd of 90 µM, is described. It is tagged with an azido group for bioconjugation, and absorbs in the blue/green and emits in the red region of the visible spectrum with a large Stokes shift. The binding modulating nitro group is introduced to the BAPTA core prior to construction of a benzofuran-2-yl carboxaldehyde by an allylation-oxidation-cyclisation sequence, which is followed by condensation with an azido-tagged thiohydantoin. The thiohydantoin unit has to be protected with an acetoxymethyl (AM) caging group to allow CuAAC click reaction and incorporation of the KDEL peptide endoplasmic reticulum (ER) retention sequence.

16.
Biol Lett ; 11(9): 20150538, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26382073

RESUMEN

There is increasing interest in the effect of energy metabolism on oxidative stress, but much ambiguity over the relationship between the rate of oxygen consumption and the generation of reactive oxygen species (ROS). Production of ROS (such as hydrogen peroxide, H2O2) in the mitochondria is primarily inferred indirectly from measurements in vitro, which may not reflect actual ROS production in living animals. Here, we measured in vivo H2O2 content using the recently developed MitoB probe that becomes concentrated in the mitochondria of living organisms, where it is converted by H2O2 into an alternative form termed MitoP; the ratio of MitoP/MitoB indicates the level of mitochondrial H2O2 in vivo. Using the brown trout Salmo trutta, we tested whether this measurement of in vivo H2O2 content over a 24 h-period was related to interindividual variation in standard metabolic rate (SMR). We showed that the H2O2 content varied up to 26-fold among fish of the same age and under identical environmental conditions and nutritional states. Interindividual variation in H2O2 content was unrelated to mitochondrial density but was significantly associated with SMR: fish with a higher mass-independent SMR had a lower level of H2O2. The mechanism underlying this observed relationship between SMR and in vivo H2O2 content requires further investigation, but may implicate mitochondrial uncoupling which can simultaneously increase SMR but reduce ROS production. To our knowledge, this is the first study in living organisms to show that individuals with higher oxygen consumption rates can actually have lower levels of H2O2.


Asunto(s)
Metabolismo Basal/fisiología , Consumo de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Trucha/metabolismo , Animales , Peróxido de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo
17.
Methods Mol Biol ; 1265: 25-50, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25634265

RESUMEN

Small molecules can be physicochemically targeted to mitochondria using the lipophilic alkyltriphenylphosphonium (TPP) group. Once in the mitochondria the TPP-conjugate can detect or influence processes within the mitochondrial matrix directly. Alternatively, the conjugate can behave as a prodrug, which is activated by release from the TPP group either using an internal or external instruction. Small molecules can be designed that can be used in any cell line, tissue or whole organism, allow temporal control, and be applied in a reversible dose-dependent fashion. An example is the detection and quantification of hydrogen peroxide in mitochondria of whole living organisms by MitoB. Hydrogen peroxide produced within the mitochondrial matrix is involved in signalling and implicated in the oxidative damage associated with aging and a wide range of age-associated conditions including cardiovascular disease, neurodegeneration, and cancer. MitoB accumulates in mitochondria and is converted into the exomarker, MitoP, by hydrogen peroxide in the mitochondrial matrix. The hydrogen peroxide concentration is determined from the ratio of MitoP to MitoB after a period of incubation, and this ratio is determined by mass spectrometry using d15-MitoP and d15-MitoB as standard. Here we describe the synthesis of MitoB and MitoP and the deuterated standards necessary for this method of quantification.


Asunto(s)
Descubrimiento de Drogas , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Descubrimiento de Drogas/métodos , Peróxido de Hidrógeno/metabolismo , Compuestos Organofosforados/síntesis química , Compuestos Organofosforados/aislamiento & purificación , Compuestos Organofosforados/metabolismo , Compuestos Organofosforados/farmacología , Oxidación-Reducción/efectos de los fármacos , Fenoles/síntesis química , Fenoles/aislamiento & purificación , Fenoles/metabolismo , Fenoles/farmacología , Especies Reactivas de Oxígeno/metabolismo
18.
Chemistry ; 20(13): 3742-51, 2014 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-24677631

RESUMEN

5,6-Disubstituted phenanthridinium cations have a range of redox, fluorescence and biological properties. Some properties rely on phenanthridiniums intercalating into DNA, but the use of these cations as exomarkers for the reactive oxygen species (ROS), superoxide, and as inhibitors of acetylcholine esterase (AChE) do not require intercalation. A versatile modular synthesis of 5,6-disubstituted phenanthridiniums that introduces diversity by Suzuki­Miyaura coupling, imine formation and microwave-assisted cyclisation is presented. Computational modelling at the density functional theory (DFT) level reveals that the novel displacement of the aryl halide by an acyclic N-alkylimine proceeds by an S(N)Ar mechanism rather than electrocyclisation. It is found that the displacement of halide is concerted and there is no stable Meisenheimer intermediate, provided the calculations consistently use a polarisable solvent model and a diffuse basis set.


Asunto(s)
ADN/química , Colorantes Fluorescentes/química , Fenantridinas/química , Cationes , Simulación por Computador , Ciclización , Colorantes Fluorescentes/síntesis química , Sustancias Intercalantes , Modelos Químicos , Estructura Molecular , Fenantridinas/síntesis química
19.
J Am Chem Soc ; 134(2): 758-61, 2012 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-22239373

RESUMEN

Depolarization of an individual mitochondrion or small clusters of mitochondria within cells has been achieved using a photoactivatable probe. The probe is targeted to the matrix of the mitochondrion by an alkyltriphenylphosphonium lipophilic cation and releases the protonophore 2,4-dinitrophenol locally in predetermined regions in response to directed irradiation with UV light via a local photolysis system. This also provides a proof of principle for the general temporally and spatially controlled release of bioactive molecules, pharmacophores, or toxins to mitochondria with tissue, cell, or mitochondrion specificity.


Asunto(s)
Mitocondrias/fisiología , Compuestos Organofosforados/química , Animales , Células Cultivadas , Sistemas de Liberación de Medicamentos , Estructura Molecular , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/fisiología , Compuestos Organometálicos/farmacología , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...