Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
2.
Int J Mol Sci ; 25(6)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38542527

RESUMEN

Angiopoietin-like protein 3 (ANGPTL3) is a plasmatic protein that plays a crucial role in lipoprotein metabolism by inhibiting the lipoprotein lipase (LPL) and the endothelial lipase (EL) responsible for the hydrolysis of phospholipids on high-density lipoprotein (HDL). Interest in developing new pharmacological therapies aimed at inhibiting ANGPTL3 has been growing due to the hypolipidemic and antiatherogenic profile observed in its absence. The goal of this study was the in silico characterization of the interaction between ANGPTL3 and EL. Because of the lack of any structural information on both the trimeric coiled-coil N-terminal domain of ANGPTL3 and the EL homodimer as well as data regarding their interactions, the first step was to obtain the three-dimensional model of these two proteins. The models were then refined via molecular dynamics (MD) simulations and used to investigate the interaction mechanism. The analysis of interactions in different docking poses and their refinement via MD allowed the identification of three specific glutamates of ANGPTL3 that recognize a positively charged patch on the surface of EL. These ANGPTL3 key residues, i.e., Glu154, Glu157, and Glu160, could form a putative molecular recognition site for EL. This study paves the way for future investigations aimed at confirming the recognition site and at designing novel inhibitors of ANGPTL3.


Asunto(s)
Proteína 3 Similar a la Angiopoyetina , Lipasa , Proteínas Similares a la Angiopoyetina , Lipasa/metabolismo , Lipoproteína Lipasa/metabolismo , Lipoproteínas HDL/metabolismo , Fosfolípidos/metabolismo , Triglicéridos , Angiopoyetinas/metabolismo
4.
Ann Hematol ; 103(2): 437-442, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38060001

RESUMEN

In patients with low-risk polycythemia vera, exposure to low-dose Ropeginterferon alfa-2b (Ropeg) 100 µg every 2 weeks for 2 years was more effective than the standard treatment of therapeutic phlebotomy in maintaining target hematocrit (HCT) (< 45%) with a reduction in the need for phlebotomy without disease progression. In the present paper, we analyzed drug survival, defined as a surrogate measure of the efficacy, safety, adherence, and tolerability of Ropeg in patients followed up to 5 years. During the first 2 years, Ropeg and phlebotomy-only (Phl-O) were discontinued in 33% and 70% of patients, respectively, for lack of response (12 in the Ropeg arm vs. 34 in the Phl-O arm) or adverse events (6 vs. 0) and withdrawal of consent in (3 vs. 10). Thirty-six Ropeg responders continued the drug for up to 3 years, and the probability of drug survival after a median of 3.15 years was 59%. Notably, the primary composite endpoint was maintained in 97%, 94%, and 94% of patients still on drug at 3, 4, and 5 years, respectively, and 60% of cases were phlebotomy-free. Twenty-three of 63 Phl-O patients (37%) failed the primary endpoint and were crossed over to Ropeg; among the risk factors for this failure, the need for more than three bloodletting procedures in the first 6 months emerged as the most important determinant. In conclusion, to improve the effectiveness of Ropeg, we suggest increasing the dose and using it earlier driven by high phlebotomy need in the first 6 months post-diagnosis.


Asunto(s)
Policitemia Vera , Humanos , Policitemia Vera/tratamiento farmacológico , Policitemia Vera/diagnóstico , Hematócrito , Factores de Riesgo , Flebotomía , Venodisección
5.
Diabetes Ther ; 15(1): 257-268, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37883003

RESUMEN

BACKGROUND: Sodium-glucose cotransporter-2 (SGLT2) inhibitors have shown controversial results in modulating plasma lipids in clinical trials. Most studies found slight increases in high-density lipoprotein (HDL) cholesterol but few have provided evidence on HDL functionality with disappointing results. However, there is broad agreement that these drugs provide cardiovascular protection through several mechanisms. Our group demonstrated that dapagliflozin improves myocardial flow reserve (MFR) in patients with type 2 diabetes (T2D) with coronary artery disease (CAD). The underlying mechanisms are still unknown, although in vitro studies have suggested the involvement of nitric oxide (NO). AIM: To investigate changes in HDL-mediated modulation of NO production with dapagliflozin and whether there is an association with MFR. METHODS: Sixteen patients with CAD-T2D were enrolled and randomized 1:1 to dapagliflozin or placebo for 4 weeks. Blood samples were collected before and after treatment for each group. The ability of HDL to stimulate NO production in endothelial cells was tested in vitro by incubating human umbilical vein endothelial cells (HUVEC) with apoB-depleted (apoB-D) serum of these patients. The production of NO was assessed by fluorescent assay, and results were expressed as fold versus untreated cells. RESULTS: Change in HDL-mediated NO production remained similar in dapagliflozin and placebo group, even after adjustment for confounders. There were no significant correlations between HDL-mediated NO production and MFR either at baseline or after treatment. No changes were found in HDL cholesterol in either group, while low-density lipoprotein cholesterol (LDL cholesterol) significantly decreased compared to baseline only in treatment group (p = 0.043). CONCLUSIONS: In patients with T2D-CAD, beneficial effects of dapagliflozin on coronary microcirculation seem to be unrelated to HDL functions. However, HDL capacity to stimulate NO production is not impaired at baseline; thus, the effect of drug treatments would be negligible. To conclude, we can assume that HDL-independent molecular pathways are involved in the improvement of MFR in this population. TRIAL REGISTRATION: EudraCT No. 2016-003614-27; ClinicalTrials.gov Identifier: NCT03313752.

6.
Circulation ; 149(10): 774-787, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38018436

RESUMEN

BACKGROUND: Cholesterol efflux capacity (CEC) predicts cardiovascular disease independently of high-density lipoprotein (HDL) cholesterol levels. Isolated small HDL particles are potent promoters of macrophage CEC by the ABCA1 (ATP-binding cassette transporter A1) pathway, but the underlying mechanisms are unclear. METHODS: We used model system studies of reconstituted HDL and plasma from control and lecithin-cholesterol acyltransferase (LCAT)-deficient subjects to investigate the relationships among the sizes of HDL particles, the structure of APOA1 (apolipoprotein A1) in the different particles, and the CECs of plasma and isolated HDLs. RESULTS: We quantified macrophage and ABCA1 CEC of 4 distinct sizes of reconstituted HDL. CEC increased as particle size decreased. Tandem mass spectrometric analysis of chemically cross-linked peptides and molecular dynamics simulations of APOA1, the major protein of HDL, indicated that the mobility of C-terminus of that protein was markedly higher and flipped off the surface in the smallest particles. To explore the physiological relevance of the model system studies, we isolated HDL from LCAT-deficient subjects, whose small HDLs (like reconstituted HDLs) are discoidal and composed of APOA1, cholesterol, and phospholipid. Despite their very low plasma levels of HDL particles, these subjects had normal CEC. In both the LCAT-deficient subjects and control subjects, the CEC of isolated extra-small HDL (a mixture of extra-small and small HDL by calibrated ion mobility analysis) was 3- to 5-fold greater than that of the larger sizes of isolated HDL. Incubating LCAT-deficient plasma and control plasma with human LCAT converted extra-small and small HDL particles into larger particles, and it markedly inhibited CEC. CONCLUSIONS: We present a mechanism for the enhanced CEC of small HDLs. In smaller particles, the C-termini of the 2 antiparallel molecules of APOA1 are "flipped" off the lipid surface of HDL. This extended conformation allows them to engage with ABCA1. In contrast, the C-termini of larger HDLs are unable to interact productively with ABCA1 because they form a helical bundle that strongly adheres to the lipid on the particle. Enhanced CEC, as seen with the smaller particles, predicts decreased cardiovascular disease risk. Thus, extra-small and small HDLs may be key mediators and indicators of the cardioprotective effects of HDL.


Asunto(s)
Apolipoproteína A-I , Enfermedades Cardiovasculares , Humanos , Apolipoproteína A-I/metabolismo , Enfermedades Cardiovasculares/metabolismo , Lipoproteínas HDL/metabolismo , Colesterol , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Macrófagos/metabolismo , HDL-Colesterol
7.
Eur J Clin Invest ; 54(1): e14083, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37571980

RESUMEN

BACKGROUND: Long non-coding RNAs (lncRNAs) could be attractive circulating biomarkers for cardiovascular risk stratification in subjects at high atherosclerotic cardiovascular disease risk such as familial hypercholesterolaemia (FH). Our aim was to investigate the presence of lncRNAs carried by high-density lipoprotein (HDL) in FH subjects and to evaluate the associations of HDL-lncRNAs with lipoproteins and mechanical vascular impairment assessed by pulse wave velocity (PWV). METHODS: This was a retrospective observational study involving 94 FH subjects on statin treatment. Biochemical assays, HDL purification, lncRNA and PWV analyses were performed in all subjects. RESULTS: LncRNA HIF1A-AS2, LASER and LEXIS were transported by HDL; moreover, HDL-lncRNA LEXIS was associated with Lp(a) plasma levels (p < .01). In a secondary analysis, the study population was stratified into two groups based on the Lp(a) median value. The high-Lp(a) group exhibited a significant increase of PWV compared to the low-Lp(a) group (9.23 ± .61 vs. 7.67 ± .56, p < .01). While HDL-lncRNA HIF1A-AS2 and LASER were similar in the two groups, the high-Lp(a) group exhibited a significant downregulation of HDL-lncRNA LEXIS compared to the low-Lp(a) group (fold change -4.4, p < .0001). Finally, Lp(a) and HDL-lncRNA LEXIS were associated with PWV (for Lp(a) p < .01; for HDL-lncRNA LEXIS p < .05). CONCLUSIONS: LncRNA HIF1A-AS2, LASER and LEXIS were transported by HDL; moreover, significant relationships of HDL-lncRNA LEXIS with Lp(a) levels and PWV were found. Our study suggests that HDL-lncRNA LEXIS may be useful to better identify FH subjects with more pronounced vascular damage.


Asunto(s)
Aterosclerosis , Hiperlipoproteinemia Tipo II , ARN Largo no Codificante , Humanos , Aterosclerosis/genética , Hiperlipoproteinemia Tipo II/genética , Lipoproteína(a) , Lipoproteínas HDL , Análisis de la Onda del Pulso , Factores de Riesgo , Estudios Retrospectivos
8.
medRxiv ; 2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37961344

RESUMEN

Background: Cholesterol efflux capacity (CEC) predicts cardiovascular disease (CVD) independently of HDL cholesterol (HDL-C) levels. Isolated small HDL particles are potent promoters of macrophage CEC by the ABCA1 pathway, but the underlying mechanisms are unclear. Methods: We used model system studies of reconstituted HDL and plasma from control and lecithin-cholesterol acyltransferase (LCAT)-deficient subjects to investigate the relationships among the sizes of HDL particles, the structure of APOA1 in the different particles, and the CECs of plasma and isolated HDLs. Results: We quantified macrophage and ABCA1 CEC of four distinct sizes of reconstituted HDL (r-HDL). CEC increased as particle size decreased. MS/MS analysis of chemically crosslinked peptides and molecular dynamics simulations of APOA1 (HDL's major protein) indicated that the mobility of that protein's C-terminus was markedly higher and flipped off the surface in the smallest particles. To explore the physiological relevance of the model system studies, we isolated HDL from LCAT-deficient subjects, whose small HDLs-like r-HDLs-are discoidal and composed of APOA1, cholesterol, and phospholipid. Despite their very low plasma levels of HDL particles, these subjects had normal CEC. In both the LCAT-deficient subjects and control subjects, the CEC of isolated extra-small HDL (a mixture of extra-small and small HDL by calibrated ion mobility analysis) was 3-5-fold greater than that of the larger sizes of isolated HDL. Incubating LCAT-deficient plasma and control plasma with human LCAT converted extra-small and small HDL particles into larger particles, and it markedly inhibited CEC. Conclusions: We present a mechanism for the enhanced CEC of small HDLs. In smaller particles, the C-termini of the two antiparallel molecules of APOA1 are flipped off the lipid surface of HDL. This extended conformation allows them to engage with ABCA1. In contrast, the C-termini of larger HDLs are unable to interact productively with ABCA1 because they form a helical bundle that strongly adheres to the lipid on the particle. Enhanced CEC, as seen with the smaller particles, predicts decreased CVD risk. Thus, extra-small and small HDLs may be key mediators and indicators of HDL's cardioprotective effects.

9.
Atherosclerosis ; 383: 117314, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37813054

RESUMEN

BACKGROUND AND AIMS: The early diagnosis of familial hypercholesterolaemia is associated with a significant reduction in cardiovascular disease (CVD) risk. While the recent use of statistical and machine learning algorithms has shown promising results in comparison with traditional clinical criteria, when applied to screening of potential FH cases in large cohorts, most studies in this field are developed using a single cohort of patients, which may hamper the application of such algorithms to other populations. In the current study, a logistic regression (LR) based algorithm was developed combining observations from three different national FH cohorts, from Portugal, Brazil and Sweden. Independent samples from these cohorts were then used to test the model, as well as an external dataset from Italy. METHODS: The area under the receiver operating characteristics (AUROC) and precision-recall (AUPRC) curves was used to assess the discriminatory ability among the different samples. Comparisons between the LR model and Dutch Lipid Clinic Network (DLCN) clinical criteria were performed by means of McNemar tests, and by the calculation of several operating characteristics. RESULTS: AUROC and AUPRC values were generally higher for all testing sets when compared to the training set. Compared with DLCN criteria, a significantly higher number of correctly classified observations were identified for the Brazilian (p < 0.01), Swedish (p < 0.01), and Italian testing sets (p < 0.01). Higher accuracy (Acc), G mean and F1 score values were also observed for all testing sets. CONCLUSIONS: Compared to DLCN criteria, the LR model revealed improved ability to correctly classify observations, and was able to retain a similar number of FH cases, with less false positive retention. Generalization of the LR model was very good across all testing samples, suggesting it can be an effective screening tool if applied to different populations.


Asunto(s)
Hiperlipoproteinemia Tipo II , Humanos , Adulto , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/epidemiología , Hiperlipoproteinemia Tipo II/genética , Pruebas Genéticas , Algoritmos , Italia , Curva ROC
10.
Atherosclerosis ; 382: 117266, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37725860

RESUMEN

BACKGROUND AND AIMS: LCAT esterifies cholesterol in both HDL (α-activity) and apoB-containing lipoproteins (ß-activity). The main activator of LCAT ß-activity is apoE, which in humans exists in 3 main different isoforms (E2, E3 and E4). Here, to gather insights into the potential role of LCAT in apoB-containing lipoprotein metabolism, we investigated the ability of apoE isoforms to promote LCAT-mediated cholesterol esterification. METHODS: We evaluated the plasma cholesterol esterification rate (CER) in 311 individuals who express functional LCAT and either apoE2, apoE3, or apoE4 and in 28 individuals who also carried LCAT mutations causing selective loss of LCAT α-activity (Fish-Eye Disease (FED)-causing mutations). The association of carrier status with CER was determined using an adjusted linear regression model. The kinetic of LCAT activity towards reconstituted HDLs (rHDLs) containing each apoE isoform was determined using the Michaelis-Menten model. RESULTS: Plasma CER was ∼20% higher in apoE2 carriers compared to apoE3 carriers, and ∼30% higher in apoE2 carriers compared to apoE4 carriers. After adjusting for age, sex, total cholesterol, HDL-C, apoA-I, apoB, chronic kidney disease diagnosis, zygosity, and LCAT concentration, CER remained significantly different among carriers of the three apoE isoforms. The same trend was observed in carriers of FED-causing mutations. rHDLs containing apoE2 were associated with a lower affinity but higher maximal esterification rate, compared to particles containing apoE3 or apoE4. CONCLUSION: The present results suggest that the apoE2 isoform is associated with a higher LCAT-mediated cholesterol esterification. This observation may contribute to the characterization of the peculiar functional properties of apoE2.

11.
Antioxidants (Basel) ; 12(8)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37627492

RESUMEN

Familial lecithin:cholesterol acyltransferase (LCAT) deficiency (FLD) is a rare genetic disease caused by the loss of function mutations in the LCAT gene. LCAT deficiency is characterized by an abnormal lipoprotein profile with severe reduction in plasma levels of high-density lipoprotein (HDL) cholesterol and the accumulation of lipoprotein X (LpX). Renal failure is the major cause of morbidity and mortality in FLD patients; the pathogenesis of renal disease is only partly understood, but abnormalities in the lipoprotein profile could play a role in disease onset and progression. Serum and lipoprotein fractions from LCAT deficient carriers and controls were tested for renal toxicity on podocytes and tubular cells, and the underlying mechanisms were investigated at the cellular level. Both LpX and HDL from LCAT-deficient carriers triggered oxidative stress in renal cells, which culminated in cell apoptosis. These effects are partly explained by lipoprotein enrichment in unesterified cholesterol and ceramides, especially in the HDL fraction. Thus, alterations in lipoprotein composition could explain some of the nephrotoxic effects of LCAT deficient lipoproteins on podocytes and tubular cells.

12.
Am J Hematol ; 98(10): 1520-1531, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37399248

RESUMEN

Transformation from chronic (CP) to blast phase (BP) in myeloproliferative neoplasm (MPN) remains poorly characterized, and no specific mutation pattern has been highlighted. BP-MPN represents an unmet need, due to its refractoriness to treatment and dismal outcome. Taking advantage of the granularity provided by single-cell sequencing (SCS), we analyzed paired samples of CP and BP in 10 patients to map clonal trajectories and interrogate target copy number variants (CNVs). Already at diagnosis, MPN present as oligoclonal diseases with varying ratio of mutated and wild-type cells, including cases where normal hematopoiesis was entirely surmised by mutated clones. BP originated from increasing clonal complexity, either on top or independent of a driver mutation, through acquisition of novel mutations as well as accumulation of clones harboring multiple mutations, that were detected at CP by SCS but were missed by bulk sequencing. There were progressive copy-number imbalances from CP to BP, that configured distinct clonal profiles and identified recurrences in genes including NF1, TET2, and BCOR, suggesting an additional level of complexity and contribution to leukemic transformation. EZH2 emerged as the gene most frequently affected by single nucleotide and CNVs, that might result in EZH2/PRC2-mediated transcriptional deregulation, as supported by combined scATAC-seq and snRNA-seq analysis of the leukemic clone in a representative case. Overall, findings provided insights into the pathogenesis of MPN-BP, identified CNVs as a hitherto poorly characterized mechanism and point to EZH2 dysregulation as target. Serial assessment of clonal dynamics might potentially allow early detection of impending disease transformation, with therapeutic implications.


Asunto(s)
Variaciones en el Número de Copia de ADN , Trastornos Mieloproliferativos , Humanos , Trastornos Mieloproliferativos/patología , Mutación , Crisis Blástica/genética , Análisis de la Célula Individual , Evolución Clonal/genética
13.
Alzheimers Res Ther ; 15(1): 95, 2023 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-37210544

RESUMEN

OBJECTIVE: The purpose of this study was to evaluate cholesterol esterification and HDL subclasses in plasma and cerebrospinal fluid (CSF) of Alzheimer's disease (AD) patients. METHODS: The study enrolled 70 AD patients and 74 cognitively normal controls comparable for age and sex. Lipoprotein profile, cholesterol esterification, and cholesterol efflux capacity (CEC) were evaluated in plasma and CSF. RESULTS: AD patients have normal plasma lipids but significantly reduced unesterified cholesterol and unesterified/total cholesterol ratio. Lecithin:cholesterol acyltransferase (LCAT) activity and cholesterol esterification rate (CER), two measures of the efficiency of the esterification process, were reduced by 29% and 16%, respectively, in the plasma of AD patients. Plasma HDL subclass distribution in AD patients was comparable to that of controls but the content of small discoidal preß-HDL particles was significantly reduced. In agreement with the reduced preß-HDL particles, cholesterol efflux capacity mediated by the transporters ABCA1 and ABCG1 was reduced in AD patients' plasma. The CSF unesterified to total cholesterol ratio was increased in AD patients, and CSF CER and CEC from astrocytes were significantly reduced in AD patients. In the AD group, a significant positive correlation was observed between plasma unesterified cholesterol and unesterified/total cholesterol ratio with Aß1-42 CSF content. CONCLUSION: Taken together our data indicate that cholesterol esterification is hampered in plasma and CSF of AD patients and that plasma cholesterol esterification biomarkers (unesterified cholesterol and unesterified/total cholesterol ratio) are significantly associated to disease biomarkers (i.e., CSF Aß1-42).


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/líquido cefalorraquídeo , Esterificación , Lipoproteínas de Alta Densidad Pre-beta , Colesterol , Biomarcadores
14.
Leukemia ; 37(5): 1068-1079, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36928007

RESUMEN

Clonal myeloproliferation and development of bone marrow (BM) fibrosis are the major pathogenetic events in myelofibrosis (MF). The identification of novel antifibrotic strategies is of utmost importance since the effectiveness of current therapies in reverting BM fibrosis is debated. We previously demonstrated that osteopontin (OPN) has a profibrotic role in MF by promoting mesenchymal stromal cells proliferation and collagen production. Moreover, increased plasma OPN correlated with higher BM fibrosis grade and inferior overall survival in MF patients. To understand whether OPN is a druggable target in MF, we assessed putative inhibitors of OPN expression in vitro and identified ERK1/2 as a major regulator of OPN production. Increased OPN plasma levels were associated with BM fibrosis development in the Romiplostim-induced MF mouse model. Moreover, ERK1/2 inhibition led to a remarkable reduction of OPN production and BM fibrosis in Romiplostim-treated mice. Strikingly, the antifibrotic effect of ERK1/2 inhibition can be mainly ascribed to the reduced OPN production since it could be recapitulated through the administration of anti-OPN neutralizing antibody. Our results demonstrate that OPN is a novel druggable target in MF and pave the way to antifibrotic therapies based on the inhibition of ERK1/2-driven OPN production or the neutralization of OPN activity.


Asunto(s)
Osteopontina , Mielofibrosis Primaria , Mielofibrosis Primaria/tratamiento farmacológico , Mielofibrosis Primaria/metabolismo , Mielofibrosis Primaria/patología , Animales , Ratones , Modelos Animales de Enfermedad , Transducción de Señal/efectos de los fármacos , Osteopontina/antagonistas & inhibidores , Osteopontina/sangre , Osteopontina/metabolismo , Fibrosis/tratamiento farmacológico , Humanos
17.
Artículo en Inglés | MEDLINE | ID: mdl-36521735

RESUMEN

Individuals with loss-of-function mutations in the ANGPTL3 gene express a rare lipid phenotype called Familial Combined Hypolipidemia (FHBL2). FHBL2 individuals show reduced plasma concentrations of total cholesterol and triglycerides as well as of lipoprotein particles, including HDL. This feature is particularly remarkable in homozygotes in whom ANGPTL3 in blood is completely absent. ANGPTL3 acts as a circulating inhibitor of LPL and EL and it is thought that EL hyperactivity is the cause of plasma HDL reduction in FHBL2. Nevertheless, the consequences of ANGTPL3 deficiency on HDL functionality have been poorly explored. In this report, HDL isolated from homozygous and heterozygous FHBL2 individuals were evaluated for their ability to preserve endothelial homeostasis as compared to control HDL. It was found that only the complete absence of ANGPTL3 alters HDL subclass distribution, as homozygous, but not heterozygous, carriers have reduced content of large and increased content of small HDL with no alterations in HDL2 and HDL3 size. The plasma content of preß-HDL was reduced in carriers and showed a positive correlation with plasma ANGPTL3 levels. Changes in composition did not however alter the functionality of FHBL2 HDL, as particles isolated from carriers retained their capacity to promote NO production and to inhibit VCAM-1 expression in endothelial cells. Furthermore, no significant changes in circulating levels of soluble ICAM-1 and E-selectin were detected in carriers. These results indicate that changes in HDL composition associated with the partial or complete absence of ANGPTL3 did not alter some of the potentially anti-atherogenic functions of these lipoproteins.


Asunto(s)
Proteína 3 Similar a la Angiopoyetina , Hipobetalipoproteinemias , Humanos , Proteínas Similares a la Angiopoyetina/genética , Células Endoteliales , Hipobetalipoproteinemias/genética
18.
Methods Cell Biol ; 171: 81-109, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35953207

RESUMEN

Philadelphia-negative myeloproliferative neoplasms (pH-MPNs) origin from the clonal expansion of hematopoietic stem cells with acquired mutations leading to uncontrolled proliferation of differentiated myeloid cells. The main entities of Ph-MPNs are represented by Polycythemia Vera (PV), Essential Thrombocythemia (ET) and Myelofibrosis (MF) that are characterized by microvascular disorders, thrombosis and bleeding, splenomegaly secondary to extramedullary hematopoiesis, various degree of bone marrow fibrosis and a progressive risk of leukemic transformation. Somatic mutations in myeloid genes including JAK2, CALR, and MPL cause the constitutive activation of the Janus Kinase 2 (JAK)/signal transducer and activator of transcription (STAT) pathway that confers proliferative and differentiative advantage to mutated hematopoietic progenitors and ultimately drives the development of a Ph-MPNs phenotype. Beyond the JAK/STAT axis, a wide number of intracellular signaling pathways were found deregulated in Ph-MPNs including the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) constitutive activation. In this chapter, we provide a detailed protocol for the immunoblotting assisted assessment of Ph-MPNs pathways activation. This protocol can be easily adapted to study protein expression and phosphorylation of hematopoietic stem progenitors and differentiated cell lineages.


Asunto(s)
Trastornos Mieloproliferativos , Policitemia Vera , Mielofibrosis Primaria , Calreticulina/genética , Humanos , Immunoblotting , Janus Quinasa 2/genética , Mutación , Trastornos Mieloproliferativos/genética , Fosfatidilinositol 3-Quinasas/genética , Policitemia Vera/genética , Mielofibrosis Primaria/genética , Proteínas Proto-Oncogénicas c-akt/genética , Células Madre , Serina-Treonina Quinasas TOR/genética
19.
Front Pediatr ; 10: 969081, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35989999

RESUMEN

Background: Lipoprotein X (LpX) - mediated extremely severe hyperlipidemia is a possible feature detectable in children with syndromic paucity of intralobular bile ducts (Alagille syndrome) but rarely in other types of intra- and/or extrahepatic infantile cholestasis. Case presentation: Here we report on a previously well 18-month child admitted for cholestatic jaundice and moderate hepatomegaly. Laboratory tests at entry showed conjugated hyperbilirubinemia, elevated values of serum aminotransferases, gamma-glutamyl transpeptidase (GGT) and bile acids (100 folds upper normal values). Extremely severe and ever-increasing hypercholesterolemia (total cholesterol up to 1,730 mg/dl) prompted an extensive search for causes of high GGT and/or hyperlipidemic cholestasis, including an extensive genetic liver panel (negative) and a liver biopsy showing a picture of obstructive cholangitis, biliary fibrosis, and bile duct proliferation with normal MDR3 protein expression. Results of a lipid study showed elevated values of unesterified cholesterol, phospholipids, and borderline/low apolipoprotein B, and low high-density lipoprotein-cholesterol. Chromatographic analysis of plasma lipoproteins fractions isolated by analytical ultracentrifugation revealed the presence of the anomalous lipoprotein (LpX). Magnetic resonance cholangiopancreatography and percutaneous transhepatic cholangiography showed stenosis of the confluence of the bile ducts with dilation of the intrahepatic biliary tract and failure to visualize the extrahepatic biliary tract. Surgery revealed focal fibroinflammatory stenosis of the left and right bile ducts confluence, treated with resection and bilioenteric anastomosis, followed by the rapid disappearance of LpX, paralleling the normalization of serum lipids, bilirubin, and bile acids, with a progressive reduction of hepatobiliary enzymes. Conclusion: We have described a unique case of focal non-neoplastic extrahepatic biliary stenosis of uncertain etiology, presenting with unusual extremely high levels of LpX-mediated hypercholesterolemia, a condition which is frequently mistaken for LDL on routine clinical tests.

20.
J Clin Lipidol ; 16(5): 694-703, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36002365

RESUMEN

BACKGROUND: Loss of function variants of LIPG gene encoding endothelial lipase (EL) are associated with primary hyperalphalipoproteinemia (HALP), a lipid disorder characterized by elevated plasma levels of high density lipoprotein cholesterol (HDL-C). OBJECTIVE: Aim of the study was the phenotypic and genotypic characterization of a family with primary HALP. METHODS: HDL subclasses distribution was determined by polyacrylamide gradient gel electrophoresis. Serum content of preß-HDL was assessed by (2D)-electrophoresis. Cholesterol efflux capacity (CEC) of serum mediated by ABCA1, ABCG1 or SR-BI was assessed using cells expressing these proteins. Cholesterol loading capacity (CLC) of serum was assayed using cultured human macrophages. Next generation sequencing was used for DNA analysis. Plasma EL mass was determined by ELISA. RESULTS: Three family members had elevated plasma HDL-C, apoA-I and total phospholipids, as well as a reduced content of preß-HDL. These subjects were heterozygous carriers of a novel variant of LIPG gene [c.526 G>T, p.(Gly176Trp)] found to be deleterious in silico. Plasma EL mass in carriers was lower than in controls. CEC of sera mediated by ABCA1 and ABCG1 transporters was substantially reduced in the carriers. This effect was maintained after correction for serum HDL concentration. The sera of carriers were found to have a higher CLC in cultured human macrophages than control sera. CONCLUSION: The novel p.(Gly176Trp) variant of endothelial lipase is associated with changes in HDL composition and subclass distribution as well as with functional changes affecting cholesterol efflux capacity of serum which suggest a defect in the early steps of revere cholesterol transport.


Asunto(s)
Colesterol , Lipoproteínas de Alta Densidad Pre-beta , Humanos , Lipoproteínas de Alta Densidad Pre-beta/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , HDL-Colesterol , Lipasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...