Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(23): 236101, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38905679

RESUMEN

Photoexcited GeTe undergoes a nonthermal phase transition from a rhombohedral to a rocksalt crystalline phase. The microscopic mechanism and the nature of the transition are unclear. By using constrained density functional perturbation theory and by accounting for quantum anharmonicity within the stochastic self-consistent harmonic approximation, we show that the nonthermal phase transition is strongly first order and does not involve phonon softening, at odds with the thermal one. The transition is driven by the closure of the single particle gap in the photoexcited rhombohedral phase. Finally, we show that ultrafast x-ray diffraction data are consistent with a coexistence of the two phases, as expected in a first order transition. Our results are relevant for the understanding of phase transitions and bonding in phase change materials.

2.
Sci Adv ; 10(19): eadl4481, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728393

RESUMEN

Screening, a ubiquitous phenomenon associated with the shielding of electric fields by surrounding charges, has been widely adopted as a means to modify a material's properties. While most studies have relied on static changes of screening through doping or gating thus far, here we demonstrate that screening can also drive the onset of distinct quantum states on the ultrafast timescale. By using time- and angle-resolved photoemission spectroscopy, we show that intense optical excitation can drive 1T-TiSe2, a prototypical charge density wave material, almost instantly from a gapped into a semimetallic state. By systematically comparing changes in band structure over time and excitation strength with theoretical calculations, we find that the appearance of this state is likely caused by a dramatic reduction of the screening length. In summary, this work showcases how optical excitation enables the screening-driven design of a nonequilibrium semimetallic phase in TiSe2, possibly providing a general pathway into highly screened phases in other strongly correlated materials.

3.
Nano Lett ; 24(20): 6017-6022, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38723148

RESUMEN

The photoluminescence spectrum of a single-layer boron nitride remains elusive, marked by enigmatic satellites that hint at significant but unidentified exciton-phonon coupling. Here, by employing a first-principles approach based on the many-body cumulant expansion of the charge response, we calculate the optical absorption and photoluminescence of a single-layer boron nitride. We identify the specific exciton-phonon scattering channels and unravel their impact on the optical absorption and photoluminescence spectra, thereby providing an interpretation of the experimental features. Finally, we show that, even in a strongly polar material such as h-BN monolayer, the electron-hole interaction responsible for the excitonic effect results in the cancellation of the Frölich interaction at small phonon momenta. This effect is captured only if the invariance of the exciton-phonon matrix elements under unitary transformations in the Bloch function manifold is preserved in the calculation.

4.
Nano Lett ; 24(6): 1867-1873, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38306119

RESUMEN

Few-layer graphene possesses low-energy carriers that behave as massive Fermions, exhibiting intriguing properties in both transport and light scattering experiments. Lowering the excitation energy of resonance Raman spectroscopy down to 1.17 eV, we target these massive quasiparticles in the split bands close to the K point. The low excitation energy weakens some of the Raman processes that are resonant in the visible, and induces a clearer frequency-separation of the substructures of the resonance 2D peak in bi- and trilayer samples. We follow the excitation-energy dependence of the intensity of each substructure, and comparing experimental measurements on bilayer graphene with ab initio theoretical calculations, we trace back such modifications on the joint effects of probing the electronic dispersion close to the band splitting and enhancement of electron-phonon matrix elements.

5.
J Phys Chem Lett ; 14(41): 9329-9334, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37819838

RESUMEN

Femtosecond pulses have been used to reveal hidden broken symmetry states and induce transitions to metastable states. However, these states are mostly transient and disappear after laser removal. Photoinduced phase transitions toward crystalline metastable states with a change of topological order are rare and difficult to predict and realize experimentally. Here, by using constrained density functional perturbation theory and accounting for light-induced quantum anharmonicity, we show that ultrafast lasers can permanently transform the topologically trivial orthorhombic structure of SnSe into the topological crystalline insulating rocksalt phase via a first-order nonthermal phase transition. We describe the reaction path and evaluate the critical fluence and possible decay channels after photoexcitation. Our simulations of the photoexcited structural and vibrational properties are in excellent agreement with recent pump-probe data in the intermediate fluence regime below the transition with an error on the curvature of the quantum free energy of the photoexcited state that is smaller than 2%.

6.
Nano Lett ; 23(14): 6658-6663, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37418339

RESUMEN

Misfit layer compounds are heterostructures composed of rocksalt units stacked with few-layer transition metal dichalcogenides. They host Ising superconductivity, charge density waves, and good thermoelectricity. The design of misfits' emergent properties is, however, hindered by the lack of a global understanding of the electronic transfer among the constituents. Here, by performing first-principles calculations, we unveil the mechanism controlling the charge transfer and demonstrate that rocksalt units are always donor and dichalcogenides acceptors. We show that misfits behave as a periodic arrangement of ultratunable field effect transistors where a charging as large as ≈6 × 1014 e- cm-2 can be reached and controlled efficiently by the La-Pb alloying in the rocksalt. Finally, we identify a strategy to design emergent superconductivity and demonstrate its applicability in (LaSe)1.27(SnSe2)2. Our work paves the way to the design synthesis of misfit compounds with tailored physical properties.

7.
Phys Rev Lett ; 130(25): 256901, 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37418733

RESUMEN

We report on resonance Raman spectroscopy measurements with excitation photon energy down to 1.16 eV on graphene, to study how low-energy carriers interact with lattice vibrations. Thanks to the excitation energy close to the Dirac point at K, we unveil a giant increase of the intensity ratio between the double-resonant 2D and 2D^{'} peaks with respect to that measured in graphite. Comparing with fully ab initio theoretical calculations, we conclude that the observation is explained by an enhanced, momentum-dependent coupling between electrons and Brillouin zone-boundary optical phonons. This finding applies to two-dimensional Dirac systems and has important consequences for the modeling of transport in graphene devices operating at room temperature.


Asunto(s)
Grafito , Espectrometría Raman , Espectrometría Raman/métodos , Grafito/química , Fonones , Vibración , Electrones
8.
ACS Nano ; 16(8): 12656-12665, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35867668

RESUMEN

Magnetic layered materials have emerged recently as promising systems to introduce magnetism in structures based on two-dimensional (2D) materials and to investigate exotic magnetic ground states in the 2D limit. In this work, we apply high hydrostatic pressures up to P ≈ 8.7 GPa to the bulk layered antiferromagnet FePS3 to tune the collective lattice excitations (phonons) in resonance with magnetic excitations (magnons). Close to P = 4 GPa, the magnon-phonon resonance is achieved, and the strong coupling between these collective modes leads to the formation of new quasiparticles, the magnon-polarons, evidenced in our low-temperature Raman scattering experiments by a particular avoided crossing behavior between the phonon and the doubly degenerate antiferromagnetic magnon. At the pressure-induced magnon-phonon resonance, three distinct coupled modes emerge. As it is mainly defined by intralayer properties, we show that the energy of the magnon is nearly pressure-independent. We additionally apply high magnetic fields up to B = 30 T to fully identify and characterize the magnon excitations and to explore the different magnon-polaron regimes for which the phonon has an energy lower than, equal to, or higher than the magnon energy. The description of our experimental data requires introducing a phonon-phonon coupling not taken into account in actual calculations.

9.
Nano Lett ; 22(13): 5094-5099, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35715214

RESUMEN

Conventionally, magnetism arises from the strong exchange interaction among the magnetic moments of d- or f-shell electrons. It can also emerge in perfect lattices from nonmagnetic elements, such as that exemplified by the Stoner criterion. Here we report tunable magnetism in suspended rhombohedral-stacked few-layer graphene (r-FLG) devices with flat bands. At small doping levels (n ∼ 1011 cm-2), we observe prominent conductance hysteresis and giant magnetoconductance that exceeds 1000% as a function of magnetic fields. Both phenomena are tunable by density and temperature and disappear at n > 1012 cm-2 or T > 5 K. These results are confirmed by first-principles calculations, which indicate the formation of a half-metallic state in doped r-FLG, in which the magnetization is tunable by electric field. Our combined experimental and theoretical work demonstrate that magnetism and spin polarization, arising from the strong electronic interactions in flat bands, emerge in a system composed entirely of carbon atoms.

10.
J Phys Chem Lett ; 12(42): 10339-10345, 2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34664958

RESUMEN

Carbyne, an infinite-length straight chain of carbon atoms, is supposed to undergo a second order phase transition from the metallic bond-symmetric cumulene (═C═C═)∞ toward the distorted insulating polyyne chain (-C≡C-)∞ displaying bond-length alternation. However, recent synthesis of ultra long carbon chains (∼6000 atoms, [Nat. Mater., 2016, 15, 634]) did not show any phase transition and detected only the polyyne phase, in agreement with previous experiments on capped finite carbon chains. Here, by performing first-principles calculations, we show that quantum-anharmonicity reduces the energy gain of the polyyne phase with respect to the cumulene one by 71%. The magnitude of the bond-length alternation increases by increasing temperature, in stark contrast with a second order phase transition, confining the cumulene-to-polyyne transition to extremely high and unphysical temperatures. Finally, we predict that a high temperature insulator-to-metal transition occurs in the polyyne phase confined in insulating nanotubes with sufficiently large dielectric constant due to a giant quantum-anharmonic bandgap renormalization.

11.
Phys Rev Lett ; 126(22): 225703, 2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-34152164

RESUMEN

We show that in noncollinear magnetic molecules, nonadiabatic (dynamical) effects due to the electron-vibron coupling are time-reversal symmetry breaking interactions for the vibrational field. Because the electronic wave function cannot be chosen as real in these molecules, a nonzero geometric vector potential (Berry connection) arises. As a result, an intrinsic nonzero vibrational angular momentum occurs even for nondegenerate modes and in the absence of external probes. The vibronic modes can then be seen as elementary quantum particles carrying a sizeable angular momentum. As a proof of concept, we demonstrate the magnitude of this topological effect by performing nonadiabatic first principles calculations on platinum clusters and by showing that these molecules host sizeable intrinsic phonon angular momenta comparable to the orbital electronic ones in itinerant ferromagnets.

12.
J Phys Condens Matter ; 33(36)2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34049302

RESUMEN

The efficient and accurate calculation of how ionic quantum and thermal fluctuations impact the free energy of a crystal, its atomic structure, and phonon spectrum is one of the main challenges of solid state physics, especially when strong anharmonicy invalidates any perturbative approach. To tackle this problem, we present the implementation on a modular Python code of the stochastic self-consistent harmonic approximation (SSCHA) method. This technique rigorously describes the full thermodynamics of crystals accounting for nuclear quantum and thermal anharmonic fluctuations. The approach requires the evaluation of the Born-Oppenheimer energy, as well as its derivatives with respect to ionic positions (forces) and cell parameters (stress tensor) in supercells, which can be provided, for instance, by first principles density-functional-theory codes. The method performs crystal geometry relaxation on the quantum free energy landscape, optimizing the free energy with respect to all degrees of freedom of the crystal structure. It can be used to determine the phase diagram of any crystal at finite temperature. It enables the calculation of phase boundaries for both first-order and second-order phase transitions from the Hessian of the free energy. Finally, the code can also compute the anharmonic phonon spectra, including the phonon linewidths, as well as phonon spectral functions. We review the theoretical framework of the SSCHA and its dynamical extension, making particular emphasis on the physical inter pretation of the variables present in the theory that can enlighten the comparison with any other anharmonic theory. A modular and flexible Python environment is used for the implementation, which allows for a clean interaction with other packages. We briefly present a toy-model calculation to illustrate the potential of the code. Several applications of the method in superconducting hydrides, charge-density-wave materials, and thermoelectric compounds are also reviewed.

13.
Adv Mater ; 33(15): e2006832, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33751670

RESUMEN

Pressure-stabilized hydrides are a new rapidly growing class of high-temperature superconductors, which is believed to be described within the conventional phonon-mediated mechanism of coupling. Here, the synthesis of one of the best-known high-TC superconductors-yttrium hexahydride I m 3 ¯ m -YH6 is reported, which displays a superconducting transition at ≈224 K at 166 GPa. The extrapolated upper critical magnetic field Bc2 (0) of YH6 is surprisingly high: 116-158 T, which is 2-2.5 times larger than the calculated value. A pronounced shift of TC in yttrium deuteride YD6 with the isotope coefficient 0.4 supports the phonon-assisted superconductivity. Current-voltage measurements show that the critical current IC and its density JC may exceed 1.75 A and 3500 A mm-2 at 4 K, respectively, which is higher than that of the commercial superconductors, such as NbTi and YBCO. The results of superconducting density functional theory (SCDFT) and anharmonic calculations, together with anomalously high critical magnetic field, suggest notable departures of the superconducting properties from the conventional Migdal-Eliashberg and Bardeen-Cooper-Schrieffer theories, and presence of an additional mechanism of superconductivity.

14.
Nat Commun ; 12(1): 598, 2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33500397

RESUMEN

Understanding of charge-density wave (CDW) phases is a main challenge in condensed matter due to their presence in high-Tc superconductors or transition metal dichalcogenides (TMDs). Among TMDs, the origin of the CDW in VSe2 remains highly debated. Here, by means of inelastic x-ray scattering and first-principles calculations, we show that the CDW transition is driven by the collapse at 110 K of an acoustic mode at qCDW = (2.25 0 0.7) r.l.u. The softening starts below 225 K and expands over a wide region of the Brillouin zone, identifying the electron-phonon interaction as the driving force of the CDW. This is supported by our calculations that determine a large momentum-dependence of the electron-phonon matrix-elements that peak at the CDW wave vector. Our first-principles anharmonic calculations reproduce the temperature dependence of the soft mode and the TCDW onset only when considering the out-of-plane van der Waals interactions, which reveal crucial for the melting of the CDW phase.

15.
Phys Rev Lett ; 127(25): 257401, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-35029411

RESUMEN

By using constrained density functional theory modeling, we demonstrate that ultrafast optical pumping unveils hidden charge orders in group VI monolayer transition metal ditellurides. We show that irradiation of the insulating 2H phases stabilizes multiple transient charge density wave orders with light-tunable distortion, periodicity, electronic structure, and band gap. Moreover, optical pumping of the semimetallic 1T^{'} phases generates a transient charge ordered metallic phase composed of 2D diamond clusters. For each transient phase we identify the critical fluence at which it is observed and the specific optical and Raman fingerprints to directly compare with future ultrafast pump-probe experiments. Our work demonstrates that it is possible to stabilize charge density waves even in insulating 2D transition metal dichalcogenides by ultrafast irradiation.

16.
Phys Rev Lett ; 125(10): 106101, 2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32955304

RESUMEN

Contradictory experiments have been reported about the dimensionality effect on the charge-density-wave transition in 2H NbSe_{2}. While scanning tunneling experiments on single layers grown by molecular beam epitaxy measure a charge-density-wave transition temperature in the monolayer similar to the bulk, around 33 K, Raman experiments on exfoliated samples observe a large enhancement of the transition temperature up to 145 K. By employing a nonperturbative approach to deal with anharmonicity, we calculate from first principles the temperature dependence of the phonon spectra both for bulk and monolayer. In both cases, the charge-density-wave transition temperature is estimated as the temperature at which the phonon energy of the mode driving the structural instability vanishes. The obtained transition temperature in the bulk is around 59 K, in rather good agreement with experiments, and it is just slightly increased in the single-layer limit to 73 K, showing the weak dependence of the transition on dimensionality. Environmental factors could motivate the disagreement between the transition temperatures reported by experiments. Our analysis also demonstrates the predominance of ionic fluctuations over electronic ones in the melting of the charge-density-wave order.

17.
Nano Lett ; 20(7): 4809-4815, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32496779

RESUMEN

Low-dimensional systems with a vanishing band gap and a large electron-hole interaction have been proposed to be unstable toward exciton formation. As the exciton binding energy increases in low dimension, conventional wisdom suggests that excitonic insulators should be more stable in 2D than in 3D. Here we study the effects of the electron-hole interaction and anharmonicity in single-layer TiSe2. We find that, contrary to the bulk case and to the generally accepted picture, in single-layer TiSe2, the electron-hole exchange interaction is much smaller in 2D than in 3D and it has weak effects on phonon spectra. By calculating anharmonic phonon spectra within the stochastic self-consistent harmonic approximation, we obtain TCDW ≈ 440 K for an isolated and undoped single layer and TCDW ≈ 364 K for an electron-doping n = 4.6 × 1013 cm-2, close to the experimental result of 200-280 K on supported samples. Our work demonstrates that anharmonicity and doping melt the charge density wave in single-layer TiSe2.

18.
Nano Lett ; 20(7): 5017-5023, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32525317

RESUMEN

The discovery of superconductivity and correlated electronic states in the flat bands of twisted bilayer graphene has raised a lot of excitement. Flat bands also occur in multilayer graphene flakes that present rhombohedral (ABC) stacking order on many consecutive layers. Although Bernal-stacked (AB) graphene is more stable, long-range ABC-ordered flakes involving up to 50 layers have been surprisingly observed in natural samples. Here, we present a microscopic atomistic model, based on first-principles density functional theory calculations, that demonstrates how shear stress can produce long-range ABC order. A stress-angle phase diagram shows under which conditions ABC-stacked graphene can be obtained, providing an experimental guide for its synthesis.

19.
Nature ; 578(7793): 66-69, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32025016

RESUMEN

The discovery of superconductivity at 200 kelvin in the hydrogen sulfide system at high pressures1 demonstrated the potential of hydrogen-rich materials as high-temperature superconductors. Recent theoretical predictions of rare-earth hydrides with hydrogen cages2,3 and the subsequent synthesis of LaH10 with a superconducting critical temperature (Tc) of 250 kelvin4,5 have placed these materials on the verge of achieving the long-standing goal of room-temperature superconductivity. Electrical and X-ray diffraction measurements have revealed a weakly pressure-dependent Tc for LaH10 between 137 and 218 gigapascals in a structure that has a face-centred cubic arrangement of lanthanum atoms5. Here we show that quantum atomic fluctuations stabilize a highly symmetrical [Formula: see text] crystal structure over this pressure range. The structure is consistent with experimental findings and has a very large electron-phonon coupling constant of 3.5. Although ab initio classical calculations predict that this [Formula: see text] structure undergoes distortion at pressures below 230 gigapascals2,3, yielding a complex energy landscape, the inclusion of quantum effects suggests that it is the true ground-state structure. The agreement between the calculated and experimental Tc values further indicates that this phase is responsible for the superconductivity observed at 250 kelvin. The relevance of quantum fluctuations calls into question many of the crystal structure predictions that have been made for hydrides within a classical approach and that currently guide the experimental quest for room-temperature superconductivity6-8. Furthermore, we find that quantum effects are crucial for the stabilization of solids with high electron-phonon coupling constants that could otherwise be destabilized by the large electron-phonon interaction9, thus reducing the pressures required for their synthesis.

20.
Nano Lett ; 19(5): 3098-3103, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-30932501

RESUMEN

At ambient pressure, bulk 2H-NbS2 displays no charge density wave instability, which is at odds with the isostructural and isoelectronic compounds 2H-NbSe2, 2H-TaS2, and 2H-TaSe2, and in disagreement with harmonic calculations. Contradictory experimental results have been reported in supported single layers, as 1H-NbS2 on Au(111) does not display a charge density wave, whereas 1H-NbS2 on 6H-SiC(0001) endures a 3 × 3 reconstruction. Here, by carrying out quantum anharmonic calculations from first-principles, we evaluate the temperature dependence of phonon spectra in NbS2 bulk and single layer as a function of pressure/strain. For bulk 2H-NbS2, we find excellent agreement with inelastic X-ray spectra and demonstrate the removal of charge ordering due to anharmonicity. In the two-dimensional limit, we find an enhanced tendency toward charge density wave order. Freestanding 1H-NbS2 undergoes a 3 × 3 reconstruction, in agreement with data on 6H-SiC(0001) supported samples. Moreover, as strains smaller than 0.5% in the lattice parameter are enough to completely remove the 3 × 3 superstructure, deposition of 1H-NbS2 on flexible substrates or a small charge transfer via field-effect could lead to devices with dynamical switching on/off of charge order.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...