RESUMEN
BACKGROUND: Chronic rhinitis symptoms cause significant health burden among children and can have a heterogeneous presentation. Defining phenotypes of childhood chronic rhinitis and associated pathobiology may lead to prevention or improved treatments. OBJECTIVES: To identify longitudinal patterns of rhinitis symptoms in childhood and determine their associations with early life risk factors, allergic comorbidities, and nasal epithelial cell gene expression. METHODS: Chronic rhinitis symptoms were evaluated from ages 1 through 11 years in 485 urban children at high risk for allergic disease in the Urban Environment and Childhood Asthma (URECA) birth cohort. We identified longitudinal rhinitis phenotypes and their relationships to early life exposures, atopic comorbidities, and patterns of nasal epithelial gene expression at age 11 years. RESULTS: Chronic rhinitis symptoms started early in many children and were a risk factor for developing aeroallergen sensitization. We identified four longitudinal rhinitis phenotypes: low/minimal disease, persistent, persistent decreasing, and late increasing. Persistent rhinitis was most closely linked to allergic sensitization and asthma. Risk factors for persistent rhinitis included frequent colds (p<0.001), antibiotic use (p<0.001), and reduced exposure to common indoor aeroallergens (p=0.003). Compared to low/minimal disease, rhinitis phenotypes were associated with increased expression of canonical Type 2 genes and decreased expression of immune response genes. CONCLUSIONS: In urban children, rhinitis symptoms often precede aeroallergen sensitization. Rhinitis phenotypes based on symptoms had distinct risk factors and nasal transcriptome. These results suggest that focusing on early life risk factors and distinct immune mechanisms may be a target to preventing chronic rhinitis in childhood.
RESUMEN
BACKGROUND: Atopic dermatitis (AD) is an inflammatory skin condition characterized by widely variable cutaneous Staphylococcus aureus abundance that contributes to disease severity and rapidly responds to type 2 immune blockade (ie, dupilumab). The molecular mechanisms regulating S aureus levels between AD subjects remain poorly understood. OBJECTIVE: We investigated host genes that may be predictive of S aureus abundance and correspond with AD severity. METHODS: We studied data derived from the National Institutes of Health/National Institute of Allergy and Infectious Diseases-funded (NCT03389893 [ADRN-09]) randomized, double-blind, placebo-controlled multicenter study of dupilumab in adults (n = 71 subjects) with moderate-to-severe AD. Bulk RNA sequencing of skin biopsy samples (n = 57 lesional, 55 nonlesional) was compared to epidermal S aureus abundance, lipidomic, and AD clinical measures. RESULTS: S aureus abundance and ceramide synthase 1 (CERS1) expression positively correlated at baseline across both nonlesional (r = 0.29, P = .030) and lesional (r = 0.41, P = .0015) skin. Lesional CERS1 expression also positively correlated with AD severity (ie, SCORAD r = 0.44, P = .0006) and skin barrier dysfunction (transepidermal water loss area under the curve r = 0.31, P = .025) at baseline. CERS1 expression (forms C18:0 sphingolipids) was negatively associated with elongation of very long-chain fatty acids (ELOVL6; C16:0âC18:0) expression and corresponded with a shorter chain length sphingolipid composition. Dupilumab rapidly reduced CERS1 expression (day 7) and ablated the relationship with S aureus abundance and ELOVL6 expression by day 21. CONCLUSION: CERS1 is a unique molecular biomarker of S aureus abundance and AD severity that may contribute to dysfunctional skin barrier and shorter-chain sphingolipid composition through fatty acid sequestration as a maladaptive compensatory response to reduced ELOVL6.
RESUMEN
BACKGROUND: Viral wheezing is an important risk factor for asthma, which comprises several respiratory phenotypes. We sought to understand if the etiology of early-life wheezing illnesses relates to childhood respiratory and asthma phenotypes. METHODS: Data were collected prospectively on 429 children in the Urban Environment and Childhood Asthma (URECA) birth cohort study through age 10 years. We identified wheezing illnesses and the corresponding viral etiology (PCR testing of nasal mucus) during the first 3 years of life. Six phenotypes of respiratory health were identified at 10 years of age based on trajectories of wheezing, allergic sensitization, and lung function. We compared the etiology of early wheezing illnesses to these wheezing respiratory phenotypes and the development of asthma. RESULTS: In the first 3 years of life, at least one virus was detected in 324 (67%) of the 483 wheezing episodes documented in the study cohort. Using hierarchical partitioning we found that non-viral wheezing episodes accounted for the greatest variance in asthma diagnosed at both 7 and 10 years of age (8.0% and 5.8% respectively). Rhinovirus wheezing illnesses explained the most variance in respiratory phenotype outcome followed by non-viral wheezing episodes (4.9% and 3.9% respectively) at 10 years of age. CONCLUSION AND RELEVANCE: Within this high-risk urban-residing cohort in early life, non-viral wheezing episodes were frequently identified and associated with asthma development. Though rhinovirus wheezing illnesses had the greatest association with phenotype outcome, the specific etiology of wheezing episodes in early life provided limited information about subsequent wheezing phenotypes.
Asunto(s)
Asma , Fenotipo , Ruidos Respiratorios , Población Urbana , Humanos , Asma/epidemiología , Asma/virología , Lactante , Femenino , Masculino , Preescolar , Niño , Estudios Prospectivos , Rhinovirus , Factores de Riesgo , Estudios de Cohortes , Infecciones del Sistema Respiratorio/epidemiología , Infecciones del Sistema Respiratorio/virología , Infecciones por Picornaviridae/epidemiología , Infecciones por Picornaviridae/complicaciones , Recién NacidoRESUMEN
BACKGROUND: A randomized trial demonstrated consumption of peanut from infancy to age 5 years prevented the development of peanut allergy. An extension of that trial demonstrated the effect persisted after 1 year of peanut avoidance. This follow-up trial examined the durability of peanut tolerance at age 144 months after years of ad libitum peanut consumption. METHODS: Participants from a randomized peanut consumption trial were assessed for peanut allergy following an extended period of eating or avoiding peanuts as desired. The primary end point was the rate of peanut allergy at age 144 months. RESULTS: We enrolled 508 of the original 640 participants (79.4%); 497 had complete primary end point data. At age 144 months, peanut allergy remained significantly more prevalent in participants in the original peanut avoidance group than in the original peanut consumption group (15.4% [38 of 246 participants] vs. 4.4% [11 of 251 participants]; P<0.001). Participants in both groups reported avoiding peanuts for prolonged periods of time between 72 and 144 months. Participants at 144 months in the peanut consumption group had levels of Ara h2-specific immunoglobulin E (a peanut allergen associated with anaphylaxis) of 0.03 ± 3.42 kU/l and levels of peanut-specific immunoglobulin G4 of 535.5 ± 4.98 µg/l, whereas participants in the peanut avoidance group had levels of Ara h2-specific immunoglobulin E of 0.06 ± 11.21 kU/l and levels of peanut-specific immunoglobulin G4 of 209.3 ± 3.84 µg/l. Adverse events were uncommon, and the majority were related to the food challenge. CONCLUSIONS: Peanut consumption, starting in infancy and continuing to age 5 years, provided lasting tolerance to peanut into adolescence irrespective of subsequent peanut consumption, demonstrating that long-term prevention and tolerance can be achieved in food allergy. (Funded by the National Institute of Allergy and Infectious Diseases and others; ITN070AD, ClinicalTrials.gov number, NCT03546413.).
Asunto(s)
Arachis , Hipersensibilidad al Cacahuete , Humanos , Hipersensibilidad al Cacahuete/prevención & control , Hipersensibilidad al Cacahuete/inmunología , Hipersensibilidad al Cacahuete/epidemiología , Estudios de Seguimiento , Arachis/inmunología , Femenino , Masculino , Preescolar , Lactante , Adolescente , Inmunoglobulina E/sangre , Inmunoglobulina E/inmunología , Niño , Tolerancia InmunológicaRESUMEN
BACKGROUND: Cockroach allergy contributes to morbidity among urban children with asthma. Few trials address the effect of subcutaneous immunotherapy (SCIT) with cockroach allergen among these at-risk children. OBJECTIVES: We sought to determine whether nasal allergen challenge (NAC) responses to cockroach allergen would improve following 1 year of SCIT. METHODS: Urban children with asthma, who were cockroach-sensitized and reactive on NAC, participated in a year-long randomized double-blind placebo-controlled SCIT trial using German cockroach extract. The primary endpoint was the change in mean Total Nasal Symptom Score (TNSS) during NAC after 12 months of SCIT. Changes in nasal transcriptomic responses during NAC, skin prick test wheal size, serum allergen-specific antibody production, and T-cell responses to cockroach allergen were assessed. RESULTS: Changes in mean NAC TNSS did not differ between SCIT-assigned (n = 28) versus placebo-assigned (n = 29) participants (P = .63). Nasal transcriptomic responses correlated with TNSS, but a treatment effect was not observed. Cockroach serum-specific IgE decreased to a similar extent in both groups, while decreased cockroach skin prick test wheal size was greater among SCIT participants (P = .04). A 200-fold increase in cockroach serum-specific IgG4 was observed among subjects receiving SCIT (P < .001) but was unchanged in the placebo group. T-cell IL-4 responses following cockroach allergen stimulation decreased to a greater extent among SCIT versus placebo (P = .002), while no effect was observed for IL-10 or IFN-γ. CONCLUSIONS: A year of SCIT failed to alter NAC TNSS and nasal transcriptome responses to cockroach allergen challenge despite systemic effects on allergen-specific skin tests, induction of serum-specific IgG4 serum production and down-modulation of allergen-stimulated T-cell responses.
Asunto(s)
Alérgenos , Asma , Desensibilización Inmunológica , Inmunoglobulina E , Humanos , Animales , Niño , Desensibilización Inmunológica/métodos , Femenino , Masculino , Alérgenos/inmunología , Alérgenos/administración & dosificación , Asma/inmunología , Asma/terapia , Adolescente , Inmunoglobulina E/sangre , Inmunoglobulina E/inmunología , Método Doble Ciego , Blattellidae/inmunología , Inyecciones Subcutáneas , Pruebas CutáneasRESUMEN
The Human Epidemiology and Response to SARS-CoV-2 (HEROS) Study is a prospective, multicity, 6-month incidence study conducted from May 2020 to February 2021. The objectives were to identify risk factors for SARS-CoV-2 infection and household transmission among children and people with asthma and allergic diseases, and to use the host nasal transcriptome sampled longitudinally to understand infection risk and sequelae at the molecular level. To overcome challenges of clinical study implementation due to the coronavirus pandemic, this surveillance study used direct-to-participant methods to remotely enroll and prospectively follow eligible children who are participants in other National Institutes of Health-funded pediatric research studies and their household members. Households participated in weekly surveys and biweekly nasal sampling regardless of symptoms. The aim of this report is to widely share the methods and study instruments and to describe the rationale, design, execution, logistics, and characteristics of a large, observational, household-based, remote cohort study of SARS-CoV-2 infection and transmission in households with children. The study enrolled a total of 5598 individuals, including 1913 principal participants (children), 1913 primary caregivers, 729 secondary caregivers, and 1043 other household children. This study was successfully implemented without necessitating any in-person research visits and provides an approach for rapid execution of clinical research. Trial registration: ClinicalTrials.gov. Identifier: NCT04375761.
Asunto(s)
COVID-19 , Composición Familiar , SARS-CoV-2 , Humanos , COVID-19/epidemiología , COVID-19/transmisión , Niño , Femenino , Masculino , Estudios Prospectivos , Preescolar , Adulto , Adolescente , Lactante , Asma/epidemiología , Estados Unidos/epidemiología , Factores de Riesgo , Persona de Mediana Edad , Proyectos de Investigación , Adulto JovenRESUMEN
BACKGROUND: Allergic sensitization and low lung function in early childhood are risk factors for subsequent wheezing and asthma. However, it is unclear how allergic sensitization affects lung function over time. OBJECTIVE: We sought to test whether allergy influences lung function and whether these factors synergistically increase the risk of continued wheezing in childhood. METHODS: We analyzed longitudinal measurements of lung function (spirometry and impulse oscillometry) and allergic sensitization (aeroallergen skin tests and serum allergen-specific IgE) throughout early childhood in the Urban Environmental and Childhood Asthma study, which included high-risk urban children living in disadvantaged neighborhoods. Intraclass correlation coefficients were calculated to assess lung function stability. Cluster analysis identified low, medium, and high allergy trajectories, which were compared with lung function and wheezing episodes in linear regression models. A variable selection model assessed predictors at age 5 years for continued wheezing through age 12 years. RESULTS: Lung function adjusted for growth was stable (intraclass correlation coefficient, 0.5-0.7) from age 5 to 12 years and unrelated to allergy trajectory. Lung function and allergic sensitization were associated with wheezing episodes in an additive fashion. In children with asthma, measuring lung function at age 5 years added little to the medical history for predicting future wheezing episodes through age 12 years. CONCLUSIONS: In high-risk urban children, age-related trajectories of allergic sensitization were not associated with lung function development; however, both indicators were related to continued wheezing. These results underscore the importance of understanding early-life factors that negatively affect lung development and suggest that treating allergic sensitization may not alter lung function development in early to mid-childhood.
Asunto(s)
Pulmón , Ruidos Respiratorios , Población Urbana , Humanos , Ruidos Respiratorios/fisiopatología , Ruidos Respiratorios/inmunología , Masculino , Femenino , Preescolar , Niño , Pulmón/fisiopatología , Pulmón/inmunología , Asma/fisiopatología , Asma/epidemiología , Asma/inmunología , Hipersensibilidad/epidemiología , Hipersensibilidad/inmunología , Hipersensibilidad/fisiopatología , Inmunoglobulina E/sangre , Inmunoglobulina E/inmunología , Pruebas de Función Respiratoria , Factores de Riesgo , Alérgenos/inmunología , Pruebas CutáneasRESUMEN
Importance: Exposure to outdoor air pollution contributes to childhood asthma development, but many studies lack the geographic, racial and ethnic, and socioeconomic diversity to evaluate susceptibility by individual-level and community-level contextual factors. Objective: To examine early life exposure to fine particulate matter (PM2.5) and nitrogen oxide (NO2) air pollution and asthma risk by early and middle childhood, and whether individual and community-level characteristics modify associations between air pollution exposure and asthma. Design, Setting, and Participants: This cohort study included children enrolled in cohorts participating in the Children's Respiratory and Environmental Workgroup consortium. The birth cohorts were located throughout the US, recruited between 1987 and 2007, and followed up through age 11 years. The survival analysis was adjusted for mother's education, parental asthma, smoking during pregnancy, child's race and ethnicity, sex, neighborhood characteristics, and cohort. Statistical analysis was performed from February 2022 to December 2023. Exposure: Early-life exposures to PM2.5 and NO2 according to participants' birth address. Main Outcomes and Measures: Caregiver report of physician-diagnosed asthma through early (age 4 years) and middle (age 11 years) childhood. Results: Among 5279 children included, 1659 (31.4%) were Black, 835 (15.8%) were Hispanic, 2555 (48.4%) where White, and 229 (4.3%) were other race or ethnicity; 2721 (51.5%) were male and 2596 (49.2%) were female; 1305 children (24.7%) had asthma by 11 years of age and 954 (18.1%) had asthma by 4 years of age. Mean values of pollutants over the first 3 years of life were associated with asthma incidence. A 1 IQR increase in NO2 (6.1 µg/m3) was associated with increased asthma incidence among children younger than 5 years (HR, 1.25 [95% CI, 1.03-1.52]) and children younger than 11 years (HR, 1.22 [95% CI, 1.04-1.44]). A 1 IQR increase in PM2.5 (3.4 µg/m3) was associated with increased asthma incidence among children younger than 5 years (HR, 1.31 [95% CI, 1.04-1.66]) and children younger than 11 years (OR, 1.23 [95% CI, 1.01-1.50]). Associations of PM2.5 or NO2 with asthma were increased when mothers had less than a high school diploma, among Black children, in communities with fewer child opportunities, and in census tracts with higher percentage Black population and population density; for example, there was a significantly higher association between PM2.5 and asthma incidence by younger than 5 years of age in Black children (HR, 1.60 [95% CI, 1.15-2.22]) compared with White children (HR, 1.17 [95% CI, 0.90-1.52]). Conclusions and Relevance: In this cohort study, early life air pollution was associated with increased asthma incidence by early and middle childhood, with higher risk among minoritized families living in urban communities characterized by fewer opportunities and resources and multiple environmental coexposures. Reducing asthma risk in the US requires air pollution regulation and reduction combined with greater environmental, educational, and health equity at the community level.
Asunto(s)
Contaminación del Aire , Asma , Niño , Embarazo , Femenino , Masculino , Humanos , Preescolar , Incidencia , Estudios de Cohortes , Dióxido de Nitrógeno , Asma/epidemiología , Asma/etiología , Contaminación del Aire/efectos adversos , Material Particulado/efectos adversosRESUMEN
BACKGROUND: Food allergies are common and are associated with substantial morbidity; the only approved treatment is oral immunotherapy for peanut allergy. METHODS: In this trial, we assessed whether omalizumab, a monoclonal anti-IgE antibody, would be effective and safe as monotherapy in patients with multiple food allergies. Persons 1 to 55 years of age who were allergic to peanuts and at least two other trial-specified foods (cashew, milk, egg, walnut, wheat, and hazelnut) were screened. Inclusion required a reaction to a food challenge of 100 mg or less of peanut protein and 300 mg or less of the two other foods. Participants were randomly assigned, in a 2:1 ratio, to receive omalizumab or placebo administered subcutaneously (with the dose based on weight and IgE levels) every 2 to 4 weeks for 16 to 20 weeks, after which the challenges were repeated. The primary end point was ingestion of peanut protein in a single dose of 600 mg or more without dose-limiting symptoms. The three key secondary end points were the consumption of cashew, of milk, and of egg in single doses of at least 1000 mg each without dose-limiting symptoms. The first 60 participants (59 of whom were children or adolescents) who completed this first stage were enrolled in a 24-week open-label extension. RESULTS: Of the 462 persons who were screened, 180 underwent randomization. The analysis population consisted of the 177 children and adolescents (1 to 17 years of age). A total of 79 of the 118 participants (67%) receiving omalizumab met the primary end-point criteria, as compared with 4 of the 59 participants (7%) receiving placebo (P<0.001). Results for the key secondary end points were consistent with those of the primary end point (cashew, 41% vs. 3%; milk, 66% vs. 10%; egg, 67% vs. 0%; P<0.001 for all comparisons). Safety end points did not differ between the groups, aside from more injection-site reactions in the omalizumab group. CONCLUSIONS: In persons as young as 1 year of age with multiple food allergies, omalizumab treatment for 16 weeks was superior to placebo in increasing the reaction threshold for peanut and other common food allergens. (Funded by the National Institute of Allergy and Infectious Diseases and others; ClinicalTrials.gov number, NCT03881696.).
Asunto(s)
Antialérgicos , Desensibilización Inmunológica , Hipersensibilidad a los Alimentos , Omalizumab , Adolescente , Niño , Humanos , Lactante , Alérgenos/efectos adversos , Arachis/efectos adversos , Desensibilización Inmunológica/métodos , Hipersensibilidad a los Alimentos/diagnóstico , Hipersensibilidad a los Alimentos/tratamiento farmacológico , Hipersensibilidad a los Alimentos/inmunología , Hipersensibilidad a los Alimentos/terapia , Omalizumab/efectos adversos , Omalizumab/uso terapéutico , Hipersensibilidad al Cacahuete/tratamiento farmacológico , Hipersensibilidad al Cacahuete/inmunología , Hipersensibilidad al Cacahuete/terapia , Antialérgicos/administración & dosificación , Antialérgicos/uso terapéutico , Preescolar , Adulto Joven , Adulto , Persona de Mediana EdadRESUMEN
Background: Food allergy (FA) and atopic dermatitis (AD) are common conditions that often present in the first year of life. Identification of underlying mechanisms and environmental determinants of FA and AD is essential to develop and implement effective prevention and treatment strategies. Objectives: We sought to describe the design of the Systems Biology of Early Atopy (SunBEAm) birth cohort. Methods: Funded by the National Institute of Allergy and Infectious Diseases (NIAID) and administered through the Consortium for Food Allergy Research (CoFAR), SunBEAm is a US population-based, multicenter birth cohort that enrolls pregnant mothers, fathers, and their newborns and follows them to 3 years. Questionnaire and biosampling strategies were developed to apply a systems biology approach to identify environmental, immunologic, and multiomic determinants of AD, FA, and other allergic outcomes. Results: Enrollment is currently underway. On the basis of an estimated FA prevalence of 6%, the enrollment goal is 2500 infants. AD is defined on the basis of questionnaire and assessment, and FA is defined by an algorithm combining history and testing. Although any FA will be recorded, we focus on the diagnosis of egg, milk, and peanut at 5 months, adding wheat, soy, cashew, hazelnut, walnut, codfish, shrimp, and sesame starting at 12 months. Sampling includes blood, hair, stool, dust, water, tape strips, skin swabs, nasal secretions, nasal swabs, saliva, urine, functional aspects of the skin, and maternal breast milk and vaginal swabs. Conclusions: The SunBEAm birth cohort will provide a rich repository of data and specimens to interrogate mechanisms and determinants of early allergic outcomes, with an emphasis on FA, AD, and systems biology.
RESUMEN
BACKGROUND: Atopic dermatitis (AD) is an inflammatory disorder characterized by dominant type 2 inflammation leading to chronic pruritic skin lesions, allergic comorbidities, and Staphylococcus aureus skin colonization and infections. S aureus is thought to play a role in AD severity. OBJECTIVES: This study characterized the changes in the host-microbial interface in subjects with AD following type 2 blockade with dupilumab. METHODS: Participants (n = 71) with moderate-severe AD were enrolled in a randomized (dupilumab vs placebo; 2:1), double-blind study at Atopic Dermatitis Research Network centers. Bioassays were performed at multiple time points: S aureus and virulence factor quantification, 16s ribosomal RNA microbiome, serum biomarkers, skin transcriptomic analyses, and peripheral blood T-cell phenotyping. RESULTS: At baseline, 100% of participants were S aureus colonized on the skin surface. Dupilumab treatment resulted in significant reductions in S aureus after only 3 days (compared to placebo), which was 11 days before clinical improvement. Participants with the greatest S aureus reductions had the best clinical outcomes, and these reductions correlated with reductions in serum CCL17 and disease severity. Reductions (10-fold) in S aureus cytotoxins (day 7), perturbations in TH17-cell subsets (day 14), and increased expression of genes relevant for IL-17, neutrophil, and complement pathways (day 7) were also observed. CONCLUSIONS: Blockade of IL-4 and IL-13 signaling, very rapidly (day 3) reduces S aureus abundance in subjects with AD, and this reduction correlates with reductions in the type 2 biomarker, CCL17, and measures of AD severity (excluding itch). Immunoprofiling and/or transcriptomics suggest a role for TH17 cells, neutrophils, and complement activation as potential mechanisms to explain these findings.
Asunto(s)
Dermatitis Atópica , Infecciones Estafilocócicas , Humanos , Dermatitis Atópica/genética , Staphylococcus aureus , Anticuerpos Monoclonales Humanizados/uso terapéutico , Piel/metabolismo , Infecciones Estafilocócicas/tratamiento farmacológico , Índice de Severidad de la Enfermedad , Resultado del TratamientoRESUMEN
BACKGROUND: The Learning Early About Peanut Allergy (LEAP) study team developed a protocol-specific algorithm using dietary history, peanut-specific IgE, and skin prick test (SPT) to determine peanut allergy status if the oral food challenge (OFC) could not be administered or did not provide a determinant result. OBJECTIVE: To investigate how well the algorithm determined allergy status in LEAP; to develop a new prediction model to determine peanut allergy status when OFC results are not available in LEAP Trio, a follow-up study of LEAP participants and their families; and to compare the new prediction model with the algorithm. METHODS: The algorithm was developed for the LEAP protocol before the analysis of the primary outcome. Subsequently, a prediction model was developed using logistic regression. RESULTS: Using the protocol-specified algorithm, 73% (453/617) of allergy determinations matched the OFC, 0.6% (4/617) were mismatched, and 26% (160/617) participants were nonevaluable. The prediction model included SPT, peanut-specific IgE, Ara h 1, Ara h 2, and Ara h 3. The model inaccurately predicted 1 of 266 participants as allergic who were not allergic by OFC and 8 of 57 participants as not allergic who were allergic by OFC. The overall error rate was 9 of 323 (2.8%) with an area under the curve of 0.99. The prediction model additionally performed well in an external validation cohort. CONCLUSION: The prediction model performed with high sensitivity and accuracy, eliminated the problem of nonevaluable outcomes, and can be used to estimate peanut allergy status in the LEAP Trio study when OFC is not available.
Asunto(s)
Hipersensibilidad al Cacahuete , Humanos , Hipersensibilidad al Cacahuete/diagnóstico , Hipersensibilidad al Cacahuete/epidemiología , Arachis , Estudios de Seguimiento , Alérgenos , Inmunoglobulina E , Pruebas Cutáneas/métodos , Antígenos de PlantasRESUMEN
Impaired lung function in early life is associated with the subsequent development of chronic respiratory disease. Most genetic associations with lung function have been identified in adults of European descent and therefore may not represent those most relevant to pediatric populations and populations of different ancestries. In this study, we performed genome-wide association analyses of lung function in a multiethnic cohort of children (n = 1,035) living in low-income urban neighborhoods. We identified one novel locus at the TDRD9 gene in chromosome 14q32.33 associated with percent predicted forced expiratory volume in one second (FEV1) (p = 2.4x10-9; ßz = -0.31, 95% CI = -0.41- -0.21). Mendelian randomization and mediation analyses revealed that this genetic effect on FEV1 was partially mediated by DNA methylation levels at this locus in airway epithelial cells, which were also associated with environmental tobacco smoke exposure (p = 0.015). Promoter-enhancer interactions in airway epithelial cells revealed chromatin interaction loops between FEV1-associated variants in TDRD9 and the promoter region of the PPP1R13B gene, a stimulator of p53-mediated apoptosis. Expression of PPP1R13B in airway epithelial cells was significantly associated the FEV1 risk alleles (p = 1.3x10-5; ß = 0.12, 95% CI = 0.06-0.17). These combined results highlight a potential novel mechanism for reduced lung function in urban youth resulting from both genetics and smoking exposure.
Asunto(s)
Estudio de Asociación del Genoma Completo , Pulmón , Adulto , Adolescente , Humanos , Niño , Pulmón/metabolismo , Metilación de ADN/genética , Multiómica , Volumen Espiratorio Forzado/genética , Genotipo , FumarRESUMEN
BACKGROUND: Asthma prevalence and severity have markedly increased with urbanisation, and children in low-income urban centres have among the greatest asthma morbidity. Outdoor air pollution has been associated with adverse respiratory effects in children with asthma. However, the mechanisms by which air pollution exposure exacerbates asthma, and how these mechanisms compare with exacerbations induced by respiratory viruses, are poorly understood. We aimed to investigate the associations between regional air pollutant concentrations, respiratory illnesses, lung function, and upper airway transcriptional signatures in children with asthma, with particular focus on asthma exacerbations occurring in the absence of respiratory virus. METHODS: We performed a retrospective analysis of data from the MUPPITS1 cohort and validated our findings in the ICATA cohort. The MUPPITS1 cohort recruited 208 children aged 6-17 years living in urban areas across nine US cities with exacerbation-prone asthma between Oct 7, 2015, and Oct 18, 2016, and monitored them during reported respiratory illnesses. The last MUPPITS1 study visit occurred on Jan 6, 2017. The ICATA cohort recruited 419 participants aged 6-20 years with persistent allergic asthma living in urban sites across eight US cities between Oct 23, 2006, and March 25, 2008, and the last study visit occurred on Dec 30, 2009. We included participants from the MUPPITS1 cohort who reported a respiratory illness at some point during the follow-up and participants from the ICATA cohort who had nasal samples collected during respiratory illness or at a scheduled visit. We used air quality index values and air pollutant concentrations for PM2·5, PM10, O3, NO2, SO2, CO, and Pb from the US Environmental Protection Agency spanning the years of both cohorts, and matched values and concentrations to each illness for each participant. We investigated the associations between regional air pollutant concentrations and respiratory illnesses and asthma exacerbations, pulmonary function, and upper airway transcriptional signatures by use of a combination of generalised additive models, case crossover analyses, and generalised linear mixed-effects models. FINDINGS: Of the 208 participants from the MUPPITS1 cohort and 419 participants from the ICATA cohort, 168 participants in the MUPPITS1 cohort (98 male participants and 70 female participants) and 189 participants in the ICATA cohort (115 male participants and 74 female participants) were included in our analysis. We identified that increased air quality index values, driven predominantly by increased PM2·5 and O3 concentrations, were significantly associated with asthma exacerbations and decreases in pulmonary function that occurred in the absence of a provoking viral infection. Moreover, individual pollutants were significantly associated with altered gene expression in coordinated inflammatory pathways, including PM2·5 with increased epithelial induction of tissue kallikreins, mucus hypersecretion, and barrier functions and O3 with increased type-2 inflammation. INTERPRETATION: Our findings suggest that air pollution is an important independent risk factor for asthma exacerbations in children living in urban areas and is potentially linked to exacerbations through specific inflammatory pathways in the airway. Further investigation of these potential mechanistic pathways could inform asthma prevention and management approaches. FUNDING: National Institutes of Health, National Institute of Allergy and Infectious Diseases.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Asma , Humanos , Masculino , Niño , Femenino , Adolescente , Estados Unidos/epidemiología , Contaminantes Atmosféricos/análisis , Estudios Retrospectivos , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Asma/epidemiología , Material Particulado/análisisRESUMEN
INTRODUCTION: To inform education and treatment discussions, it is important to understand how persons with haemophilia prefer to learn about and discuss new therapies and to identify variables that influence decision-making. AIM: The aim of this study was to evaluate preferences and variables which influence decision-making related to gene therapy and other novel haemophilia therapies. METHODS: An online survey was sent to men with severe haemophilia enrolled in the National Hemophilia Foundation Community Voices in Research online platform for patient-powered research. RESULTS: One hundred four men completed the survey including 33% Hispanics, 96 who had had not gene therapy and 71/96 (74%) who were on prophylaxis. Ninety-five percent were somewhat or very familiar with gene therapy. Men with haemophilia obtain information about new therapies from several sources, most commonly their haemophilia treatment team, patient advocacy groups and self-study. Participants identified safety and efficacy as well as other educational needs to inform decision-making. Of those without prior gene therapy, 73% indicated a high likelihood of considering gene therapy. Hispanic ethnicity and government-issued insurance were associated with a higher likelihood of considering gene therapy as a treatment option. CONCLUSION: Haemophilia Treatment Centers and patient advocacy groups must be able to educate persons with haemophilia about aspects of novel therapies which are important to the individual, especially short- and long-term safety and efficacy. Further research is needed to determine how patient activation and health literacy influence decision-making and how to achieve equitable access and valid informed consent for novel therapies.
Asunto(s)
Hemofilia A , Masculino , Humanos , Hemofilia A/tratamiento farmacológico , Participación del Paciente , Encuestas y Cuestionarios , EscolaridadRESUMEN
BACKGROUND: Black and Hispanic children living in urban environments in the USA have an excess burden of morbidity and mortality from asthma. Therapies directed at the eosinophilic phenotype reduce asthma exacerbations in adults, but few data are available in children and diverse populations. Furthermore, the molecular mechanisms that underlie exacerbations either being prevented by, or persisting despite, immune-based therapies are not well understood. We aimed to determine whether mepolizumab, added to guidelines-based care, reduced the number of asthma exacerbations during a 52-week period compared with guidelines-based care alone. METHODS: This is a randomised, double-blind, placebo-controlled, parallel-group trial done at nine urban medical centres in the USA. Children and adolescents aged 6-17 years, who lived in socioeconomically disadvantaged neighbourhoods and had exacerbation-prone asthma (defined as ≥two exacerbations in the previous year) and blood eosinophils of at least 150 cells per µL were randomly assigned 1:1 to mepolizumab (6-11 years: 40 mg; 12-17 years: 100 mg) or placebo injections once every 4 weeks, plus guideline-based care, for 52 weeks. Randomisation was done using a validated automated system. Participants, investigators, and the research staff who collected outcome measures remained masked to group assignments. The primary outcome was the number of asthma exacerbations that were treated with systemic corticosteroids during 52 weeks in the intention-to-treat population. The mechanisms of treatment response were assessed by study investigators using nasal transcriptomic modular analysis. Safety was assessed in the intention-to-treat population. This trial is registered with ClinicalTrials.gov, NCT03292588. FINDINGS: Between Nov 1, 2017, and Mar 12, 2020, we recruited 585 children and adolescents. We screened 390 individuals, of whom 335 met the inclusion criteria and were enrolled. 290 met the randomisation criteria, were randomly assigned to mepolizumab (n=146) or placebo (n=144), and were included in the intention-to-treat analysis. 248 completed the study. The mean number of asthma exacerbations within the 52-week study period was 0·96 (95% CI 0·78-1·17) with mepolizumab and 1·30 (1·08-1·57) with placebo (rate ratio 0·73; 0·56-0·96; p=0·027). Treatment-emergent adverse events occurred in 42 (29%) of 146 participants in the mepolizumab group versus 16 (11%) of 144 participants in the placebo group. No deaths were attributed to mepolizumab. INTERPRETATION: Phenotype-directed therapy with mepolizumab in urban children with exacerbation-prone eosinophilic asthma reduced the number of exacerbations. FUNDING: US National Institute of Allergy and Infectious Diseases and GlaxoSmithKline.
Asunto(s)
Asma , Eosinofilia Pulmonar , Anticuerpos Monoclonales Humanizados , Asma/tratamiento farmacológico , Humanos , Estados Unidos , Población UrbanaRESUMEN
The Human Epidemiology and Response to SARS-CoV-2 (HEROS) is a prospective multi-city 6-month incidence study which was conducted from May 2020-February 2021. The objectives were to identify risk factors for SARS-CoV-2 infection and household transmission among children and people with asthma and allergic diseases, and to use the host nasal transcriptome sampled longitudinally to understand infection risk and sequelae at the molecular level. To overcome challenges of clinical study implementation due to the coronavirus pandemic, this surveillance study used direct-to-participant methods to remotely enroll and prospectively follow eligible children who are participants in other NIH-funded pediatric research studies and their household members. Households participated in weekly surveys and biweekly nasal sampling regardless of symptoms. The aim of this report is to widely share the methods and study instruments and to describe the rationale, design, execution, logistics and characteristics of a large, observational, household-based, remote cohort study of SARS-CoV-2 infection and transmission in households with children. The study enrolled a total of 5,598 individuals, including 1,913 principal participants (children), 1,913 primary caregivers, 729 secondary caregivers and 1,043 other household children. This study was successfully implemented without necessitating any in-person research visits and provides an approach for rapid execution of clinical research.
RESUMEN
BACKGROUND: Whether children and people with asthma and allergic diseases are at increased risk for severe acute respiratory syndrome virus 2 (SARS-CoV-2) infection is unknown. OBJECTIVE: Our aims were to determine the incidence of SARS-CoV-2 infection in households with children and to also determine whether self-reported asthma and/or other allergic diseases are associated with infection and household transmission. METHODS: For 6 months, biweekly nasal swabs and weekly surveys were conducted within 1394 households (N = 4142 participants) to identify incident SARS-CoV-2 infections from May 2020 to February 2021, which was the pandemic period largely before a vaccine and before the emergence of SARS-CoV-2 variants. Participant and household infection and household transmission probabilities were calculated by using time-to-event analyses, and factors associated with infection and transmission risk were determined by using regression analyses. RESULTS: In all, 147 households (261 participants) tested positive for SARS-CoV-2. The household SARS-CoV-2 infection probability was 25.8%; the participant infection probability was similar for children (14.0% [95% CI = 8.0%-19.6%]), teenagers (12.1% [95% CI = 8.2%-15.9%]), and adults (14.0% [95% CI = 9.5%-18.4%]). Infections were symptomatic in 24.5% of children, 41.2% of teenagers, and 62.5% of adults. Self-reported doctor-diagnosed asthma was not a risk factor for infection (adjusted hazard ratio [aHR] = 1.04 [95% CI = 0.73-1.46]), nor was upper respiratory allergy or eczema. Self-reported doctor-diagnosed food allergy was associated with lower infection risk (aHR = 0.50 [95% CI = 0.32-0.81]); higher body mass index was associated with increased infection risk (aHR per 10-point increase = 1.09 [95% CI = 1.03-1.15]). The household secondary attack rate was 57.7%. Asthma was not associated with household transmission, but transmission was lower in households with food allergy (adjusted odds ratio = 0.43 [95% CI = 0.19-0.96]; P = .04). CONCLUSION: Asthma does not increase the risk of SARS-CoV-2 infection. Food allergy is associated with lower infection risk, whereas body mass index is associated with increased infection risk. Understanding how these factors modify infection risk may offer new avenues for preventing infection.
Asunto(s)
Asma , COVID-19 , Hipersensibilidad , Adolescente , Adulto , Asma/epidemiología , COVID-19/epidemiología , Niño , Humanos , Hipersensibilidad/epidemiología , Estudios Prospectivos , Factores de Riesgo , SARS-CoV-2RESUMEN
BACKGROUND: Seasonal variation in respiratory illnesses and exacerbations in pediatric populations with asthma is well described, though whether upper airway microbes play season-specific roles in these events is unknown. OBJECTIVE: We hypothesized that nasal microbiota composition is seasonally dynamic and that discrete microbe-host interactions modify risk of asthma exacerbation in a season-specific manner. METHODS: Repeated nasal samples from children with exacerbation-prone asthma collected during periods of respiratory health (baseline; n = 181 samples) or first captured respiratory illness (n = 97) across all seasons, underwent bacterial (16S ribosomal RNA gene) and fungal (internal transcribed spacer region 2) biomarker sequencing. Virus detection was performed by multiplex PCR. Paired nasal transcriptome data were examined for seasonal dynamics and integrative analyses. RESULTS: Upper airway bacterial and fungal microbiota and rhinovirus detection exhibited significant seasonal dynamics. In seasonally adjusted analysis, variation in both baseline and respiratory illness microbiota related to subsequent exacerbation. Specifically, in the fall, when respiratory illness and exacerbation events were most frequent, several Moraxella and Haemophilus members were enriched both in virus-positive respiratory illnesses and those that progressed to exacerbations. The abundance of 2 discrete bacterial networks, characteristically comprising either Streptococcus or Staphylococcus, exhibited opposing interactions with an exacerbation-associated SMAD3 nasal epithelial transcriptional module to significantly increase the odds of subsequent exacerbation (odds ratio = 14.7, 95% confidence interval = 1.50-144, P = .02; odds ratio = 39.17, 95% confidence interval = 2.44-626, P = .008, respectively). CONCLUSIONS: Upper airway microbiomes covary with season and with seasonal trends in respiratory illnesses and asthma exacerbations. Seasonally adjusted analyses reveal specific bacteria-host interactions that significantly increase risk of asthma exacerbation in these children.