Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Dev Orig Health Dis ; 14(5): 602-613, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37822211

RESUMEN

The maternal metabolic environment can be detrimental to the health of the offspring. In a previous work, we showed that maternal high-fat (HH) feeding in rabbit induced sex-dependent metabolic adaptation in the fetus and led to metabolic syndrome in adult offspring. As early development representing a critical window of susceptibility, in the present work we aimed to explore the effects of the HH diet on the oocyte, preimplantation embryo and its microenvironment. In oocytes from females on HH diet, transcriptomic analysis revealed a weak modification in the content of transcripts mainly involved in meiosis and translational control. The effect of maternal HH diet on the embryonic microenvironment was investigated by identifying the metabolite composition of uterine and embryonic fluids collected in vivo by biomicroscopy. Metabolomic analysis revealed differences in the HH uterine fluid surrounding the embryo, with increased pyruvate concentration. Within the blastocoelic fluid, metabolomic profiles showed decreased glucose and alanine concentrations. In addition, the blastocyst transcriptome showed under-expression of genes and pathways involved in lipid, glucose and amino acid transport and metabolism, most pronounced in female embryos. This work demonstrates that the maternal HH diet disrupts the in vivo composition of the embryonic microenvironment, where the presence of nutrients is increased. In contrast to this nutrient-rich environment, the embryo presents a decrease in nutrient sensing and metabolism suggesting a potential protective process. In addition, this work identifies a very early sex-specific response to the maternal HH diet, from the blastocyst stage.


Asunto(s)
Blastocisto , Dieta Alta en Grasa , Animales , Masculino , Conejos , Femenino , Dieta Alta en Grasa/efectos adversos , Blastocisto/fisiología , Embrión de Mamíferos , Oocitos , Glucosa/metabolismo , Desarrollo Embrionario/fisiología
2.
Cells ; 11(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36497026

RESUMEN

The prevalence of metabolic diseases is increasing, leading to more women entering pregnancy with alterations in the glucose-insulin axis. The aim of this work was to investigate the effect of a hyperglycemic and/or hyperinsulinemic environment on the development of the preimplantation embryo. In rabbit embryos developed in vitro in the presence of high insulin (HI), high glucose (HG), or both (HGI), we determined the transcriptomes of the inner cell mass (ICM) and the trophectoderm (TE). HI induced 10 differentially expressed genes (DEG) in ICM and 1 in TE. HG ICM exhibited 41 DEGs involved in oxidative phosphorylation (OXPHOS) and cell number regulation. In HG ICM, proliferation was decreased (p < 0.01) and apoptosis increased (p < 0.001). HG TE displayed 132 DEG linked to mTOR signaling and regulation of cell number. In HG TE, proliferation was increased (p < 0.001) and apoptosis decreased (p < 0.001). HGI ICM presented 39 DEG involved in OXPHOS and no differences in proliferation and apoptosis. HGI TE showed 16 DEG linked to OXPHOS and cell number regulation and exhibited increased proliferation (p < 0.001). Exposure to HG and HGI during preimplantation development results in common and specific ICM and TE responses that could compromise the development of the future individual and placenta.


Asunto(s)
Glucosa , Insulina , Embarazo , Animales , Conejos , Femenino , Insulina/metabolismo , Glucosa/farmacología , Glucosa/metabolismo , Blastocisto/metabolismo , Desarrollo Embrionario , Insulina Regular Humana/metabolismo
3.
Development ; 149(17)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35993311

RESUMEN

Despite the growing interest in the rabbit model for developmental and stem cell biology, the characterization of embryos at the molecular level is still poorly documented. We conducted a transcriptome analysis of rabbit preimplantation embryos from E2.7 (morula stage) to E6.6 (early primitive streak stage) using bulk and single-cell RNA-sequencing. In parallel, we studied oxidative phosphorylation and glycolysis, and analysed active and repressive epigenetic modifications during blastocyst formation and expansion. We generated a transcriptomic, epigenetic and metabolic map of the pluripotency continuum in rabbit preimplantation embryos, and identified novel markers of naive pluripotency that might be instrumental for deriving naive pluripotent stem cell lines. Although the rabbit is evolutionarily closer to mice than to primates, we found that the transcriptome of rabbit epiblast cells shares common features with those of humans and non-human primates.


Asunto(s)
Células Madre Pluripotentes , Transcriptoma , Animales , Blastocisto/metabolismo , Epigénesis Genética , Estratos Germinativos , Ratones , Células Madre Pluripotentes/metabolismo , Conejos , Transcriptoma/genética
4.
Biol Reprod ; 104(4): 794-805, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33459770

RESUMEN

The success of embryo development and implantation depends in part on the environment in which the embryo evolves. However, the composition of the uterine fluid surrounding the embryo in the peri-implantation period remains poorly studied. In this work, we aimed to develop a new strategy to visualize, collect, and analyze both blastocoelic liquid and juxta-embryonic uterine fluid from in vivo peri-implantation rabbit embryos. Using high-resolution ultrasound biomicroscopy, embryos were observed as fluid-filled anechoic vesicles, some of which were surrounded by a thin layer of uterine fluid. Ultrasound-guided puncture and aspiration of both the blastocoelic fluid contained in the embryo and the uterine fluid in the vicinity of the embryo were performed. Using nuclear magnetic resonance spectroscopy, altogether 24 metabolites were identified and quantified, of which 21 were detected in both fluids with a higher concentration in the uterus compared to the blastocoel. In contrast, pyruvate was detected at a higher concentration in blastocoelic compared to uterine fluid. Two acidic amino acids, glutamate and aspartate, were not detected in uterine fluid in contrast to blastocoelic fluid, suggesting a local regulation of uterine fluid composition. To our knowledge, this is the first report of simultaneous analysis of blastocoelic and uterine fluids collected in vivo at the time of implantation in mammals, shedding new insight for understanding the relationship between the embryo and its local environment at this critical period of development.


Asunto(s)
Blastocisto/metabolismo , Líquidos Corporales/metabolismo , Metaboloma/fisiología , Animales , Blastocisto/química , Líquidos Corporales/química , Embrión de Mamíferos , Femenino , Metabolómica , Microscopía Acústica , Embarazo , Conejos , Útero/diagnóstico por imagen
5.
Genomics ; 110(2): 98-111, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28911974

RESUMEN

The GLIS family zinc finger 3 isoform (GLIS3) is a risk gene for Type 1 and Type 2 diabetes, glaucoma and Alzheimer's disease endophenotype. We identified GLIS3 binding sites in insulin secreting cells (INS1) (FDR q<0.05; enrichment range 1.40-9.11 fold) sharing the motif wrGTTCCCArTAGs, which were enriched in genes involved in neuronal function and autophagy and in risk genes for metabolic and neuro-behavioural diseases. We confirmed experimentally Glis3-mediated regulation of the expression of genes involved in autophagy and neuron function in INS1 and neuronal PC12 cells. Naturally-occurring coding polymorphisms in Glis3 in the Goto-Kakizaki rat model of type 2 diabetes were associated with increased insulin production in vitro and in vivo, suggestive alteration of autophagy in PC12 and INS1 and abnormal neurogenesis in hippocampus neurons. Our results support biological pleiotropy of GLIS3 in pathologies affecting ß-cells and neurons and underline the existence of trans­nosology pathways in diabetes and its co-morbidities.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Neuronas/metabolismo , Factores de Transcripción/metabolismo , Animales , Autofagia , Sitios de Unión , Línea Celular Tumoral , Células Cultivadas , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Hipocampo/citología , Masculino , Neurogénesis , Neuronas/citología , Células PC12 , Polimorfismo Genético , Unión Proteica , Ratas , Ratas Sprague-Dawley , Factores de Transcripción/química , Factores de Transcripción/genética
6.
Cell Rep ; 20(1): 136-148, 2017 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-28683308

RESUMEN

The influence of the gut microbiome on metabolic and behavioral traits is widely accepted, though the microbiome-derived metabolites involved remain unclear. We carried out untargeted urine 1H-NMR spectroscopy-based metabolic phenotyping in an isogenic C57BL/6J mouse population (n = 50) and show that microbial-host co-metabolites are prodromal (i.e., early) markers predicting future divergence in metabolic (obesity and glucose homeostasis) and behavioral (anxiety and activity) outcomes with 94%-100% accuracy. Some of these metabolites also modulate disease phenotypes, best illustrated by trimethylamine-N-oxide (TMAO), a product of microbial-host co-metabolism predicting future obesity, impaired glucose tolerance (IGT), and behavior while reducing endoplasmic reticulum stress and lipogenesis in 3T3-L1 adipocytes. Chronic in vivo TMAO treatment limits IGT in HFD-fed mice and isolated pancreatic islets by increasing insulin secretion. We highlight the prodromal potential of microbial metabolites to predict disease outcomes and their potential in shaping mammalian phenotypic heterogeneity.


Asunto(s)
Ansiedad/microbiología , Microbioma Gastrointestinal , Intolerancia a la Glucosa/microbiología , Metaboloma , Obesidad/microbiología , Fenotipo , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Animales , Ansiedad/metabolismo , Biomarcadores/metabolismo , Glucemia/metabolismo , Línea Celular , Estrés del Retículo Endoplásmico , Intolerancia a la Glucosa/metabolismo , Interacciones Huésped-Patógeno , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Lipogénesis , Masculino , Metilaminas/farmacología , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Oxidantes/farmacología
7.
Physiol Genomics ; 49(1): 1-10, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27815534

RESUMEN

microRNAs (miRNAs) are intracellular and circulating molecular components contributing to genome expression control through binding mRNA targets, which generally results in downregulated mRNA expression. One miRNA can target several mRNAs, and one transcript can be targeted by several miRNAs, resulting in complex fine-tuning of regulation of gene networks and signaling pathways. miRNAs regulate metabolism, adipocyte differentiation, pancreatic development, ß-cell mass, insulin biosynthesis, secretion, and signaling, and their role in diabetes and obesity is emerging. Their pathophysiological effects are essentially dependent on cellular coexpression with their mRNA targets, which can show tissue-specific transcriptional responses to disease conditions and environmental challenges. Current knowledge of miRNA biology and their impact on the pathogenesis of diabetes and obesity is based on experimental data documenting miRNA expression generally in single tissue types that can be correlated with expression of target mRNAs to integrate miRNA in functional pathways and gene networks. Here we present results from the most significant studies dealing with miRNA function in liver, fat, skeletal muscle, and endocrine pancreas and their implication in diabetes and obesity.


Asunto(s)
Diabetes Mellitus/fisiopatología , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , MicroARNs/metabolismo , Obesidad/fisiopatología , Animales , Diabetes Mellitus/genética , Humanos , Secreción de Insulina , MicroARNs/genética , Obesidad/genética
8.
Genome Med ; 8(1): 101, 2016 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-27716393

RESUMEN

BACKGROUND: The genetic regulation of metabolic phenotypes (i.e., metabotypes) in type 2 diabetes mellitus occurs through complex organ-specific cellular mechanisms and networks contributing to impaired insulin secretion and insulin resistance. Genome-wide gene expression profiling systems can dissect the genetic contributions to metabolome and transcriptome regulations. The integrative analysis of multiple gene expression traits and metabolic phenotypes (i.e., metabotypes) together with their underlying genetic regulation remains a challenge. Here, we introduce a systems genetics approach based on the topological analysis of a combined molecular network made of genes and metabolites identified through expression and metabotype quantitative trait locus mapping (i.e., eQTL and mQTL) to prioritise biological characterisation of candidate genes and traits. METHODS: We used systematic metabotyping by 1H NMR spectroscopy and genome-wide gene expression in white adipose tissue to map molecular phenotypes to genomic blocks associated with obesity and insulin secretion in a series of rat congenic strains derived from spontaneously diabetic Goto-Kakizaki (GK) and normoglycemic Brown-Norway (BN) rats. We implemented a network biology strategy approach to visualize the shortest paths between metabolites and genes significantly associated with each genomic block. RESULTS: Despite strong genomic similarities (95-99 %) among congenics, each strain exhibited specific patterns of gene expression and metabotypes, reflecting the metabolic consequences of series of linked genetic polymorphisms in the congenic intervals. We subsequently used the congenic panel to map quantitative trait loci underlying specific mQTLs and genome-wide eQTLs. Variation in key metabolites like glucose, succinate, lactate, or 3-hydroxybutyrate and second messenger precursors like inositol was associated with several independent genomic intervals, indicating functional redundancy in these regions. To navigate through the complexity of these association networks we mapped candidate genes and metabolites onto metabolic pathways and implemented a shortest path strategy to highlight potential mechanistic links between metabolites and transcripts at colocalized mQTLs and eQTLs. Minimizing the shortest path length drove prioritization of biological validations by gene silencing. CONCLUSIONS: These results underline the importance of network-based integration of multilevel systems genetics datasets to improve understanding of the genetic architecture of metabotype and transcriptomic regulation and to characterize novel functional roles for genes determining tissue-specific metabolism.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Metaboloma , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Transcriptoma , Animales , Animales Congénicos , Mapeo Cromosómico , Diabetes Mellitus Tipo 2/patología , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ontología de Genes , Redes Reguladoras de Genes , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Masculino , Redes y Vías Metabólicas , Anotación de Secuencia Molecular , Ratas Endogámicas BN , Biología de Sistemas
9.
G3 (Bethesda) ; 6(11): 3671-3683, 2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27646706

RESUMEN

To test the impact of genetic heterogeneity on cis- and trans-mediated mechanisms of gene expression regulation, we profiled the transcriptome of adipose tissue in 20 inbred congenic strains derived from diabetic Goto-Kakizaki (GK) rats and Brown-Norway (BN) controls, which contain well-defined blocks (1-183 Mb) of genetic polymorphisms, and in 123 genetically heterogeneous rats of an (GK × BN)F2 offspring. Within each congenic we identified 73-1351 differentially expressed genes (DEGs), only 7.7% of which mapped within the congenic blocks, and which may be regulated in cis The remainder localized outside the blocks, and therefore must be regulated in trans Most trans-regulated genes exhibited approximately twofold expression changes, consistent with monoallelic expression. Altered biological pathways were replicated between congenic strains sharing blocks of genetic polymorphisms, but polymorphisms at different loci also had redundant effects on transcription of common distant genes and pathways. We mapped 2735 expression quantitative trait loci (eQTL) in the F2 cross, including 26% predominantly cis-regulated genes, which validated DEGs in congenic strains. A hotspot of >300 eQTL in a 10 cM region of chromosome 1 was enriched in DEGs in a congenic strain. However, many DEGs among GK, BN and congenic strains did not replicate as eQTL in F2 hybrids, demonstrating distinct mechanisms of gene expression when alleles segregate in an outbred population or are fixed homozygous across the entire genome or in short genomic regions. Our analysis provides conceptual advances in our understanding of the complex architecture of genome expression and pathway regulation, and suggests a prominent impact of epistasis and monoallelic expression on gene transcription.

10.
Eur J Hum Genet ; 24(6): 838-43, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26395558

RESUMEN

Semaphorins are a large family of secreted and membrane-associated proteins necessary for wiring of the brain. Semaphorin 5A (SEMA5A) acts as a bifunctional guidance cue, exerting both attractive and inhibitory effects on developing axons. Previous studies have suggested that SEMA5A could be a susceptibility gene for autism spectrum disorders (ASDs). We first identified a de novo translocation t(5;22)(p15.3;q11.21) in a patient with ASD and intellectual disability (ID). At the translocation breakpoint on chromosome 5, we observed a 861-kb deletion encompassing the end of the SEMA5A gene. We delineated the breakpoint by NGS and observed that no gene was disrupted on chromosome 22. We then used Sanger sequencing to search for deleterious variants affecting SEMA5A in 142 patients with ASD. We also identified two independent heterozygous variants located in a conserved functional domain of the protein. Both variants were maternally inherited and predicted as deleterious. Our genetic screens identified the first case of a de novo SEMA5A microdeletion in a patient with ASD and ID. Although our study alone cannot formally associate SEMA5A with susceptibility to ASD, it provides additional evidence that Semaphorin dysfunction could lead to ASD and ID. Further studies on Semaphorins are warranted to better understand the role of this family of genes in susceptibility to neurodevelopmental disorders.


Asunto(s)
Trastorno del Espectro Autista/genética , Deleción Cromosómica , Discapacidad Intelectual/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Trastorno del Espectro Autista/complicaciones , Trastorno del Espectro Autista/diagnóstico , Niño , Puntos de Rotura del Cromosoma , Cromosomas Humanos Par 22/genética , Cromosomas Humanos Par 5/genética , Humanos , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/diagnóstico , Masculino , Herencia Paterna , Semaforinas , Translocación Genética
11.
PLoS One ; 9(4): e94555, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24743600

RESUMEN

Post-translational protein modifications such as acetylation have significant regulatory roles in metabolic processes, but their relationship to both variation in gene expression and DNA sequence is unclear. We address this question in the Goto-Kakizaki (GK) rat inbred strain, a model of polygenic type 2 diabetes. Expression of the NAD-dependent deacetylase Sirtuin-3 is down-regulated in GK rats compared to normoglycemic Brown Norway (BN) rats. We show first that a promoter SNP causes down-regulation of Sirtuin-3 expression in GK rats. We then use mass-spectrometry to identify proteome-wide differential lysine acetylation of putative Sirtuin-3 protein targets in livers of GK and BN rats. These include many proteins in pathways connected to diabetes and metabolic syndrome. We finally sequence GK and BN liver transcriptomes and find that mRNA expression of these targets does not differ significantly between GK and BN rats, in contrast to other components of the same pathways. We conclude that physiological differences between GK and BN rats are mediated by a combination of differential protein acetylation and gene transcription and that genetic variation can modulate acetylation independently of expression.


Asunto(s)
Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Acetilación , Acetiltransferasas/genética , Aminoácidos/metabolismo , Animales , Ciclo del Ácido Cítrico , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica , Gluconeogénesis , Glucólisis , Hígado/metabolismo , Masculino , Vía de Pentosa Fosfato , Polimorfismo Genético , Procesamiento Proteico-Postraduccional , Proteómica , Purinas/metabolismo , Pirimidinas/metabolismo , Ratas , Análisis de Secuencia de ARN , Sirtuina 3/genética , Especificidad de la Especie , Transcripción Genética
12.
PLoS One ; 9(2): e90045, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24587207

RESUMEN

Regenerating (REG) proteins are associated with islet development, ß-cell damage, diabetes and pancreatitis. Particularly, REG-1 and REG-3-beta are involved in cell growth/survival and/or inflammation and the Reg1 promoter contains interleukin-6 (IL-6)-responsive elements. We showed by transcriptome analysis that islets of Goto-Kakizaki (GK) rats, a model of spontaneous type 2 diabetes, overexpress Reg1, 3α, 3ß and 3γ, vs Wistar islets. Goto-Kakizaki rat islets also exhibit increased cytokine/chemokine expression/release, particularly IL-6. Here we analyzed Reg1 and Reg3ß expression and REG-1 immuno-localization in the GK rat pancreas in relationship with inflammation. Isolated pancreatic islets and acinar tissue from male adult Wistar and diabetic GK rats were used for quantitative RT-PCR analysis. REG-1 immunohistochemistry was performed on paraffin sections with a monoclonal anti-rat REG-1 antibody. Islet cytokine/chemokine release was measured after 48 h-culture. Islet macrophage-positive area was quantified on cryostat sections using anti-CD68 and major histocompatibility complex (MHC) class II antibodies. Pancreatic exocrine-to-endocrine Reg1 and Reg3ß mRNA ratios were markedly increased in Wistar vs GK rats. Conversely, both genes were upregulated in isolated GK rat islets. These findings were unexpected, because Reg genes are expressed in the pancreatic acinar tissue. However, we observed REG-1 protein labeling in acinar peri-ductal tissue close to islets and around large, often disorganized, GK rat islets, which may retain acinar cells due to their irregular shape. These large islets also showed peri-islet macrophage infiltration and increased release of various cytokines/chemokines, particularly IL-6. Thus, IL-6 might potentially trigger acinar REG-1 expression and secretion in the vicinity of large diabetic GK rat islets. This increased acinar REG-1 expression might reflect an adaptive though unsuccessful response to deleterious microenvironment.


Asunto(s)
Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Regulación de la Expresión Génica , Islotes Pancreáticos/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Litostatina/genética , Litostatina/metabolismo , Animales , Quimiocinas/sangre , Quimiocinas/metabolismo , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Macrófagos/metabolismo , Masculino , Proteínas Asociadas a Pancreatitis , Ratas , Ratas Wistar
13.
PLoS One ; 9(3): e91375, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24675842

RESUMEN

MicroRNAs are emerging as new mediators in the regulation of adipose tissue biology and the development of obesity. An important role of microRNA-125a has been suggested in the pathogenesis of insulin resistance (IR). Here, we characterized the function of microRNA-125a in adipose tissue in a context of experimentally-induced IR and obesity in mice and in obese patients. We showed time dependent overexpression of the microRNA in adipose tissue of BALB/c and C57BL/6J mice in response to high fat diet (HFD) feeding. MicroRNA-125a expression was downregulated in vitro in insulin resistant 3T3-L1 adipocytes and ex vivo in adipose tissue of obese patients. In vitro modulation of microRNA-125a expression in 3T3-L1 adipocytes did not affect glucose uptake. Gene set enrichment analysis (GSEA) identified significantly altered expression patterns of predicted microRNA-125a gene targets in transcriptomic datasets of adipose tissue from HFD-fed mice and obese patients. Among genes that contributed to global enrichment of altered expression of microRNA-125a targets, Thyrotroph embryonic factor (Tef), Mannan-binding lectin serine peptidase 1, Reticulon 2 and Ubiquitin-conjugating enzyme E2L3 were significantly differentially expressed in adipose tissue in these groups. We showed that Tef expression is reduced in adipose tissue of obese patients following gastric bypass surgery. Our findings indicate that microRNA-125a expression in adipose tissue adapts to IR and may play a role in the development of obesity in mice and obese subjects through uncoupled regulation of the expression of microRNA-125a and its targets.


Asunto(s)
Adaptación Biológica/genética , Tejido Adiposo/metabolismo , Regulación de la Expresión Génica , MicroARNs/genética , Obesidad/genética , Células 3T3-L1 , Adipocitos/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Cirugía Bariátrica , Biomarcadores , Diferenciación Celular , Análisis por Conglomerados , Dieta Alta en Grasa , Regulación hacia Abajo , Femenino , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Glucosa/metabolismo , Humanos , Resistencia a la Insulina , Masculino , Ratones , Persona de Mediana Edad , Obesidad/diagnóstico , Obesidad/metabolismo , Obesidad/cirugía , Fenotipo , Interferencia de ARN , Factores Sexuales , Transcriptoma
14.
PLoS One ; 8(12): e82825, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24324835

RESUMEN

Nutritional factors play important roles in the etiology of obesity, type 2 diabetes mellitus and their complications through genotype x environment interactions. We have characterised molecular adaptation to high fat diet (HFD) feeding in inbred mouse strains widely used in genetic and physiological studies. We carried out physiological tests, plasma lipid assays, obesity measures, liver histology, hepatic lipid measurements and liver genome-wide gene transcription profiling in C57BL/6J and BALB/c mice fed either a control or a high fat diet. The two strains showed marked susceptibility (C57BL/6J) and relative resistance (BALB/c) to HFD-induced insulin resistance and non alcoholic fatty liver disease (NAFLD). Global gene set enrichment analysis (GSEA) of transcriptome data identified consistent patterns of expression of key genes (Srebf1, Stard4, Pnpla2, Ccnd1) and molecular pathways in the two strains, which may underlie homeostatic adaptations to dietary fat. Differential regulation of pathways, including the proteasome, the ubiquitin mediated proteolysis and PPAR signalling in fat fed C57BL/6J and BALB/c suggests that altered expression of underlying diet-responsive genes may be involved in contrasting nutrigenomic predisposition and resistance to insulin resistance and NAFLD in these models. Collectively, these data, which further demonstrate the impact of gene x environment interactions on gene expression regulations, contribute to improved knowledge of natural and pathogenic adaptive genomic regulations and molecular mechanisms associated with genetically determined susceptibility and resistance to metabolic diseases.


Asunto(s)
Dieta Alta en Grasa , Hígado Graso/etiología , Hígado Graso/metabolismo , Nutrigenómica , Obesidad/complicaciones , Obesidad/etiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Adaptación Fisiológica , Animales , Susceptibilidad a Enfermedades , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Glucosa/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Enfermedad del Hígado Graso no Alcohólico , Reproducibilidad de los Resultados , Transducción de Señal , Transcriptoma
16.
Nat Genet ; 45(7): 767-75, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23708188

RESUMEN

Genetic mapping on fully sequenced individuals is transforming understanding of the relationship between molecular variation and variation in complex traits. Here we report a combined sequence and genetic mapping analysis in outbred rats that maps 355 quantitative trait loci for 122 phenotypes. We identify 35 causal genes involved in 31 phenotypes, implicating new genes in models of anxiety, heart disease and multiple sclerosis. The relationship between sequence and genetic variation is unexpectedly complex: at approximately 40% of quantitative trait loci, a single sequence variant cannot account for the phenotypic effect. Using comparable sequence and mapping data from mice, we show that the extent and spatial pattern of variation in inbred rats differ substantially from those of inbred mice and that the genetic variants in orthologous genes rarely contribute to the same phenotype in both species.


Asunto(s)
Ansiedad/genética , Mapeo Cromosómico/métodos , Cardiopatías/genética , Esclerosis Múltiple/genética , Análisis de Secuencia de ADN/métodos , Animales , Animales no Consanguíneos , Variación Genética/genética , Genotipo , Humanos , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo/genética , Ratas
17.
J Clin Endocrinol Metab ; 97(5): E775-80, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22419723

RESUMEN

BACKGROUND: White adipose tissue (WAT) can rapidly expand or regress under different nutritional conditions. The role of angiogenesis in the expandability of human adipose tissue is established. However, whether sc and omental WAT (scWAT and oWAT) angiogenesis could influence fat distribution and metabolic diseases is not known. AIM: The aim of this study was to analyze whether the capacity of angiogenesis in scWAT and oWAT correlates with fat accumulation and fat loss, fat distribution, adipocyte hypertrophy, and metabolic disorders in obese subjects. METHODS: Samples of scWAT and oWAT were obtained during bariatric surgery in 29 obese nondiabetic subjects. Vascular density and inflammatory infiltrate were analyzed by immunohistochemistry, and expression of angiogenic genes was analyzed by quantitative PCR. These parameters were correlated with anthropometric and metabolic parameters. RESULTS: Vascular density of scWAT correlated positively with body mass index, whereas vascular density of the oWAT correlated with waist circumference. There was no correlation of markers of angiogenesis and metabolic disorders. The number of vessels per adipocyte and the expression level of receptor 2 of vascular endothelial growth factor correlated with adipocyte area in scWAT and oWAT. Finally, weight loss after bariatric surgery correlated negatively with adipocyte hypertrophy and vascular density and positively with inflammation and angiogenesis of WAT. CONCLUSION: Angiogenesis may influence WAT expansion and plasticity but does not appear to be involved in the development of insulin resistance in subjects with severe obesity.


Asunto(s)
Tejido Adiposo/irrigación sanguínea , Neovascularización Fisiológica/fisiología , Obesidad/fisiopatología , Tejido Adiposo/fisiopatología , Adulto , Cirugía Bariátrica , Femenino , Humanos , Resistencia a la Insulina/fisiología , Masculino , Persona de Mediana Edad , Obesidad/cirugía
18.
PLoS One ; 7(1): e29438, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22272235

RESUMEN

AIMS/HYPOTHESIS: Islet vascularization, by controlling beta-cell mass expansion in response to increased insulin demand, is implicated in the progression to glucose intolerance and type 2 diabetes. We investigated how hyperglycaemia impairs expansion and differentiation of the growing pancreas. We have grafted xenogenic (avian) embryonic pancreas in severe combined immuno-deficient (SCID) mouse and analyzed endocrine and endothelial development in hyperglycaemic compared to normoglycaemic conditions. METHODS: 14 dpi chicken pancreases were grafted under the kidney capsule of normoglycaemic or hyperglycaemic, streptozotocin-induced, SCID mice and analyzed two weeks later. Vascularization was analyzed both quantitatively and qualitatively using either in situ hybridization with both mouse- and chick-specific RNA probes for VEGFR2 or immunohistochemistry with an antibody to nestin, a marker of endothelial cells that is specific for murine cells. To inhibit angiopoietin 2 (Ang2), SCID mice were treated with 4 mg/kg IP L1-10 twice/week. RESULTS: In normoglycaemic condition, chicken-derived endocrine and exocrine cells developed well and intragraft vessels were lined with mouse endothelial cells. When pancreases were grafted in hyperglycaemic mice, growth and differentiation of the graft were altered and we observed endothelial discontinuities, large blood-filled spaces. Vessel density was decreased. These major vascular anomalies were associated with strong over-expression of chick-Ang2. To explore the possibility that Ang2 over-expression could be a key step in vascular disorganization induced by hyperglycaemia, we treated mice with L1-10, an Ang-2 specific inhibitor. Inhibition of Ang2 improved vascularization and beta-cell density. CONCLUSIONS: This work highlighted an important role of Ang2 in pancreatic vascular defects induced by hyperglycaemia.


Asunto(s)
Angiopoyetina 2/metabolismo , Diabetes Mellitus Experimental/metabolismo , Neovascularización Patológica/metabolismo , Páncreas/irrigación sanguínea , Angiopoyetina 2/antagonistas & inhibidores , Angiopoyetina 2/genética , Animales , Glucemia/metabolismo , Embrión de Pollo , Pollos , Diabetes Mellitus Experimental/genética , Células Endoteliales/metabolismo , Femenino , Hiperglucemia/genética , Hiperglucemia/metabolismo , Inmunohistoquímica , Hibridación in Situ , Proteínas de Filamentos Intermediarios/genética , Proteínas de Filamentos Intermediarios/metabolismo , Islotes Pancreáticos/irrigación sanguínea , Islotes Pancreáticos/metabolismo , Ratones , Ratones SCID , Neovascularización Patológica/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Nestina , Páncreas/metabolismo , Trasplante de Páncreas/métodos , Páncreas Exocrino/irrigación sanguínea , Páncreas Exocrino/metabolismo , Trasplante Heterólogo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
19.
Growth Factors ; 27(6): 409-18, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19919529

RESUMEN

The Goto-Kakizaki (GK) rat is a type 2 diabetes model with a defective beta-cell mass detectable in late fetal development. Diminished IGF-2 production seems to be involved in this effect. Herein, we analyzed the effect of maternal food-restriction on the beta-cell mass of GK fetuses and the involvement of the IGF system, highly responsive to nutritional status in this process. To this end, in undernourished GK fetuses (U-GK), we measured serum GH/IGF levels, beta-cell mass, replication and differentiation, and IGF-1/-2 protein content in liver and pancreas tissue. Pregnant GK females were food restricted (65% restriction) during the last week of gestation. Our results show that maternal malnutrition ameliorates beta-cell mass in U-GK fetuses and a specific pancreatic IGF-2 increase may be instrumental in this effect. Further studies are needed to determine whether maternal undernutrition is sufficient to delay or decrease the risk of the GK rat for developing diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Modelos Animales de Enfermedad , Feto/metabolismo , Factor II del Crecimiento Similar a la Insulina/metabolismo , Células Secretoras de Insulina , Desnutrición , Páncreas , Animales , Diferenciación Celular , Proliferación Celular , Femenino , Feto/citología , Regulación del Desarrollo de la Expresión Génica , Humanos , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Hígado/embriología , Hígado/metabolismo , Páncreas/embriología , Páncreas/metabolismo , Embarazo , Preñez , Ratas , Ratas Wistar
20.
Diabetes ; 57(12): 3247-57, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18835936

RESUMEN

OBJECTIVE: The expansion of adipose tissue is linked to the development of its vasculature. However, the regulation of adipose tissue angiogenesis in humans has not been extensively studied. Our aim was to compare the angiogenesis associated with subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) from the same obese patients in an in vivo model. RESEARCH DESIGN AND METHODS: Adipose tissue samples from visceral (VAT) and subcutaneous (SAT) sites, obtained from 36 obese patients (mean BMI 46.5 kg/m(2)) during bariatric surgery, were layered on chick chorioallantoïc membrane (CAM). RESULTS: Both SAT and VAT expressed angiogenic factors without significant difference for vascular endothelial growth factor (VEGF) expression. Adipose tissue layered on CAM stimulated angiogenesis. Angiogenic stimulation was macroscopically detectable, with engulfment of the samples, in 39% and was evidenced by angiography in 59% of the samples. A connection between CAM and adipose tissue vessels was evidenced by immunohistochemistry, with recruitment of both avian and human endothelial cells. The angiogenic potency of adipose tissue was not related to its localization (with an angiogenic stimulation in 60% of SAT samples and 61% of VAT samples) or to adipocyte size or inflammatory infiltrate assessed in adipose samples before the graft on CAM. Stimulation of angiogenesis by adipose tissue was nearly abolished by bevacizumab, which specifically targets human VEGF. CONCLUSIONS: We have established a model to study the regulation of angiogenesis by human adipose tissue. This model highlighted the role of VEGF in angiogenesis in both SAT and VAT.


Asunto(s)
Tejido Adiposo/fisiopatología , Neovascularización Fisiológica/fisiología , Obesidad Mórbida/fisiopatología , Obesidad/fisiopatología , Tejido Adiposo/irrigación sanguínea , Animales , Cirugía Bariátrica , Embrión de Pollo , Humanos , Obesidad Mórbida/cirugía , Receptores de Factores de Crecimiento Endotelial Vascular/fisiología , Piel/irrigación sanguínea , Factor A de Crecimiento Endotelial Vascular/fisiología , Vísceras/irrigación sanguínea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA