Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 15(9)2022 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35591686

RESUMEN

Tin-bronze alloys with a tin content of at least 10 wt% have excellent mechanical properties, wear resistance, and corrosion resistance. Among these alloys, Cu-10Sn was investigated in this study for production with the laser powder bed fusion process with a 500W Yb:YAG laser. In particular, a design of experiment (DoE) was developed in order to identify the optimal process parameters to obtain full density, low surface roughness, and high dimensional accuracy. Samples were characterized with Archimedes' method and optical microscopy to determine their final density. It was shown that the first method is fast but not as reliable as the second one. A first mechanical characterization was performed through microhardness tests. Finally, a set of process parameters was identified to produce fully dense samples with low surface roughness and high accuracy. The results showed that the volumetric energy density could represent an approach that is too simplified, therefore limiting the direct correlation with the physical aspects of the process.

2.
Materials (Basel) ; 13(7)2020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-32218273

RESUMEN

The aim of this study is to define the process parameters to build components for industrial applications in A357 alloy by Laser Powder Bed Fusion (LPBF) and to evaluate the effects of post-processing heat treatments on the microstructure and mechanical properties in order to obtain the highest hardness and strength. First, process parameters values were defined to obtain full dense components with highest productivity. Then samples were built for microstructural, hardness, and tensile strength investigation in different conditions: as-built, after a stress-relieving treatment, and after a T6 precipitation hardening treatment. For this latest treatment, different time and temperatures for solution and ageing were investigated to find the best in terms of final hardness achievable. It is demonstrated that samples in A357 alloy can be successfully fabricated by LPBF with a density of 99.9% and a mean hardness value achievable of 116 HV0.1, in as-built condition. However, for production purposes, it is fundamental to reduce the residual stresses typical of LPBF. It was shown that a similar hardness value could be obtained after a stress-relieving treatment followed by a proper T6 treatment, together with a coarser but more isotropic microstructure.

3.
Materials (Basel) ; 12(19)2019 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-31569803

RESUMEN

The manufacture of highly complex components from nickel-based superalloys with laser powder bed fusion (L-PBF) technology can reduce the production costs parts with comparable microstructural and mechanical properties when compared to casting. The purpose of this study was to investigate the characteristics of samples produced in commercial Hastelloy X (with w% composition of 21Cr-18Fe-9Mo-0.7W-1.5Co-0.1C-1Si-1Mn-0.5Al-0.15Ti-bal.Ni) with an L-PBF process in terms of build density, accuracy, surface roughness, and interface area between the part and the support structures. Samples were obtained with a high density (99.88%), without cracks and with low surface roughness. From the analysis of the support structures, it emerged that the choice of the parameters between support structures, the lower face of the part (down-skin) and the internal area of the part (in-skin) is fundamental to the correct realization of these structures in order to avoid deformation of the components that is induced by thermal stresses during part building.

4.
Materials (Basel) ; 12(11)2019 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-31146366

RESUMEN

The effect of microstructure on the susceptibility to selective corrosion of Alloy 625 produced by laser powder bed fusion (LPBF) process was investigated through intergranular corrosion tests according to ASTM G28 standard. The effect of heat treatment on selective corrosion susceptibility was also evaluated. The behavior was compared to commercial hot-worked, heat treated Grade 1 Alloy 625. The morphology of attack after boiling ferric sulfate-sulfuric acid test according to ASTM G28 standard is less penetrating for LPBF 625 alloy compared to hot-worked and heat-treated alloy both in as-built condition and after heat treatment. The different attack morphology can be ascribed to the oversaturation of the alloying elements in the nickel austenitic matrix obtained due to the very high cooling rate. On as-built specimens, a shallow selective attack of the border of the melt pools was observed, which disappeared after the heat treatment. The results confirmed similar intergranular corrosion susceptibility, but different corrosion morphologies were detected. The results are discussed in relation to the unique microstructures of LPBF manufactured alloys.

5.
J Healthc Eng ; 2019: 9748212, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30992744

RESUMEN

Additive manufacturing (AM) is a disruptive technology as it pushes the frontier of manufacturing towards a new design perspective, such as the ability to shape geometries that cannot be formed with any other traditional technique. AM has today shown successful applications in several fields such as the biomedical sector in which it provides a relatively fast and effective way to solve even complex medical cases. From this point of view, the purpose of this paper is to illustrate AM technologies currently used in the medical field and their benefits along with contemporary. The review highlights differences in processes, materials, and design of additive manufacturing techniques used in biomedical applications. Successful case studies are presented to emphasise the potentiality of AM processes. The presented review supports improvements in materials and design for future researches in biomedical surgeries using instruments and implants made by AM.


Asunto(s)
Materiales Biocompatibles/química , Prótesis e Implantes , Diseño de Prótesis , Diseño Asistido por Computadora/instrumentación , Electrones , Humanos , Rayos Láser , Materiales Manufacturados , Ensayo de Materiales , Poliésteres/química , Impresión Tridimensional , Reproducibilidad de los Resultados , Estereolitografía
6.
Materials (Basel) ; 12(8)2019 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-31010189

RESUMEN

Nickel-based Inconel 718 is a very good candidate for selective laser melting (SLM). During the SLM process, Inconel 718 develops a complex and heterogeneous microstructure. A deep understanding of the microstructural features of the as-built SLM material is essential for the design of a proper post-process heat treatment. In this study, the microstructure of as-built SLM Inconel 718 was investigated at different length scales using optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Electron backscatter diffraction (EBSD) was also used to analyze the grain morphology and crystallographic texture. Grains elongated in the build direction and crossing several deposited layers were observed. The grains are not constrained by the laser tracks or by the melt pools, which indicates epitaxial growth controls the solidification. Each grain is composed of fine columnar dendrites that develop along one of their <100> axes oriented in the direction of the local thermal gradient. Consequently, prominent <100> crystallographic texture was observed and the dendrites tend to grow to the build direction or with occasional change of 90° at the edge of the melt pools. At the dendrite length scale, the microsegregation of the alloying elements, interdendritic precipitates, and dislocations was also detected.

7.
Materials (Basel) ; 11(7)2018 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-29933566

RESUMEN

This experimental work is aimed at studying the effect of microstructural modifications induced by post-processing heat treatments on the corrosion behavior of silicon-aluminum alloys produced by means of laser powder bed fusion (LPBF). The manufacturing technique leads to microstructures characterized by the presence of melt pools, which are quite different compared to casting alloys. In this study, the behavior of an AlSi10Mg alloy was evaluated by means of intergranular corrosion tests according to ISO 11846 standard on heat-treated samples ranging from 200 to 500 °C as well as on untreated samples. We found that temperatures above 200 °C reduced microhardness of the alloy, and different corrosion morphologies occurred due to the modification of both size and distribution of silicon precipitates. Selective penetrating attacks occurred at melt pool borders. The intergranular corrosion phenomena were less intense for as-produced specimens without heat treatments compared to the heat-treated specimens at 200 and 300 °C. General corrosion morphologies were noticed for specimens heat treated at temperatures exceeding 400 °C.

8.
J Appl Biomater Funct Mater ; 16(2): 57-67, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28967051

RESUMEN

The mechanical properties and biocompatibility of titanium alloy medical devices and implants produced by additive manufacturing (AM) technologies - in particular, selective laser melting (SLM), electron beam melting (EBM) and laser metal deposition (LMD) - have been investigated by several researchers demonstrating how these innovative processes are able to fulfil medical requirements for clinical applications. This work reviews the advantages given by these technologies, which include the possibility to create porous complex structures to improve osseointegration and mechanical properties (best match with the modulus of elasticity of local bone), to lower processing costs, to produce custom-made implants according to the data for the patient acquired via computed tomography and to reduce waste.


Asunto(s)
Aleaciones , Titanio , Aleaciones/química , Aleaciones/uso terapéutico , Titanio/química , Titanio/uso terapéutico
9.
Materials (Basel) ; 10(1)2017 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-28772436

RESUMEN

The aim of this review is to analyze and to summarize the state of the art of the processing of aluminum alloys, and in particular of the AlSi10Mg alloy, obtained by means of the Additive Manufacturing (AM) technique known as Selective Laser Melting (SLM). This process is gaining interest worldwide, thanks to the possibility of obtaining a freeform fabrication coupled with high mechanical properties related to a very fine microstructure. However, SLM is very complex, from a physical point of view, due to the interaction between a concentrated laser source and metallic powders, and to the extremely rapid melting and the subsequent fast solidification. The effects of the main process variables on the properties of the final parts are analyzed in this review: from the starting powder properties, such as shape and powder size distribution, to the main process parameters, such as laser power and speed, layer thickness, and scanning strategy. Furthermore, a detailed overview on the microstructure of the AlSi10Mg material, with the related tensile and fatigue properties of the final SLM parts, in some cases after different heat treatments, is presented.

10.
Adv Mater ; 28(19): 3711, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27167030

RESUMEN

On page 3712, E. Fantino, A. Chiappone, and co-workers fabricate conductive 3D hybrid structures by coupling the photo-reduction of metal precursors with 3D printing technology. The generated structures consist of metal nanoparticles embedded in a polymer matrix shaped into complex multilayered architectures. 3D conductive structures are fabricated with a digital light-processing printer incorporating silver salt into photocurable formulations.

11.
Adv Mater ; 28(19): 3712-7, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26992060

RESUMEN

Coupling the photoreduction of a metal precursor with 3D-printing technology is shown to allow the fabrication of conductive 3D hybrid structures consisting of metal nanoparticles and organic polymers shaped in complex multilayered architectures. 3D conductive structures are fabricated incorporating silver nitrate into a photocurable oligomer in the presence of suitable photoinitiators and exposing them to a digital light system.

12.
ACS Appl Mater Interfaces ; 8(8): 5627-33, 2016 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-26871993

RESUMEN

In this work, three-dimensional (3D) structured hybrid materials were fabricated combining 3D printing technology with in situ generation of inorganic nanoparticles by sol-gel technique. Those materials, consisting of silica nanodomains covalently interconnected with organic polymers, were 3D printed in complex multilayered architectures, incorporating liquid silica precursors into a photocurable oligomer in the presence of suitable photoinitiators and exposing them to a digital light system. A post sol-gel treatment in acidic vapors allowed the in situ generation of the inorganic phase in a dedicated step. This method allows to build hybrid structures operating with a full liquid formulation without meeting the drawbacks of incorporating inorganic powders into 3D printable formulations. The influence of the generated silica nanoparticle on the printed objects was deeply investigated at macro- and nanoscale; the resulting light hybrid structures show improved mechanical properties and, thus, have a huge potential for applications in a variety of advanced technologies.

13.
Materials (Basel) ; 9(7)2016 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-28773716

RESUMEN

Polymer nanocomposites have always attracted the interest of researchers and industry because of their potential combination of properties from both the nanofillers and the hosting matrix. Gathering nanomaterials and 3D printing could offer clear advantages and numerous new opportunities in several application fields. Embedding nanofillers in a polymeric matrix could improve the final material properties but usually the printing process gets more difficult. Considering this drawback, in this paper we propose a method to obtain polymer nanocomposites by in situ generation of nanoparticles after the printing process. 3D structures were fabricated through a Digital Light Processing (DLP) system by disolving metal salts in the starting liquid formulation. The 3D fabrication is followed by a thermal treatment in order to induce in situ generation of metal nanoparticles (NPs) in the polymer matrix. Comprehensive studies were systematically performed on the thermo-mechanical characteristics, morphology and electrical properties of the 3D printed nanocomposites.

14.
Sci Rep ; 5: 17373, 2015 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-26611142

RESUMEN

In contemporary society we observe an everlasting permeation of electron devices, smartphones, portable computing tools. The tiniest living organisms on Earth could become the key to address this challenge: energy generation by bacterial processes from renewable stocks/waste through devices such as microbial fuel cells (MFCs). However, the application of this solution was limited by a moderately low efficiency. We explored the limits, if any, of additive manufacturing (AM) technology to fabricate a fully AM-based powering device, exploiting low density, open porosities able to host the microbes, systems easy to fuel continuously and to run safely. We obtained an optimal energy recovery close to 3 kWh m(-3) per day that can power sensors and low-power appliances, allowing data processing and transmission from remote/harsh environments.

15.
Materials (Basel) ; 6(3): 856-869, 2013 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-28809344

RESUMEN

In this paper, a characterization of an AlSiMg alloy processed by direct metal laser sintering (DMLS) is presented, from the analysis of the starting powders, in terms of size, morphology and chemical composition, through to the evaluation of mechanical and microstructural properties of specimens built along different orientations parallel and perpendicular to the powder deposition plane. With respect to a similar aluminum alloy as-fabricated, a higher yield strength of about 40% due to the very fine microstructure, closely related to the mechanisms involved in this additive process is observed.

16.
Aesthetic Plast Surg ; 34(2): 200-11, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19768492

RESUMEN

To obtain the best surgical results in orthognathic surgery, treatment planning and evaluation of results should be performed. In these operations it is necessary to provide the physician with powerful tools that can underline the behavior of soft tissue. For this reason, considering the improvements provided by the use of 3D scanners in medical diagnosis, we propose a methodology for analyzing facial morphology working with geometrical features. The methodology has been tested on patients with malocclusion in order to analyze the reliability and efficiency of the provided diagnostic results.


Asunto(s)
Cara/anatomía & histología , Cara/cirugía , Imagenología Tridimensional , Maxilar/anatomía & histología , Maxilar/cirugía , Modelos Anatómicos , Cirugía Bucal/métodos , Humanos
17.
J Plast Reconstr Aesthet Surg ; 63(2): 218-26, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19059819

RESUMEN

This article compares most of the three-dimensional (3D) morphometric methods currently proposed by the technical literature to evaluate their morphological informative value, while applying them to a case study of five patients affected by the malocclusion pathology. The compared methods are: conventional cephalometric analysis (CCA), generalised Procrustes superimposition (GPS) with principal-components analysis (PCA), thin-plate spline analysis (TPS), multisectional spline (MS) and clearance vector mapping (CVM). The results show that MS provides more reliable and useful diagnostic information.


Asunto(s)
Biometría/métodos , Cefalometría , Imagenología Tridimensional , Maloclusión/cirugía , Planificación de Atención al Paciente , Gráficos por Computador , Humanos , Maloclusión/patología , Análisis de Componente Principal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...