Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Trends Cancer ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39107162

RESUMEN

Noncoding RNAs, especially miRNAs, play a pivotal role in cancer initiation and metastasis, underscoring their susceptibility to precise modulation via small molecule inhibitors. This review examines the innovative strategy of targeting oncogenic miRNAs with small drug-like molecules, an approach that can reshape the cancer treatment landscape. We review the current understanding of the multifaceted roles of miRNAs in oncogenesis, highlighting emerging therapeutic paradigms that have the potential to expand cancer treatment options. As research on small molecule inhibitors of miRNA is still in its early stages, ongoing investigative efforts and the development of new technologies and chemical matter are essential to fulfill the significant potential of this innovative approach to cancer treatment.

2.
Mol Cancer ; 23(1): 156, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095771

RESUMEN

BACKGROUND: Elevated microRNA-155 (miR-155) expression in non-small-cell lung cancer (NSCLC) promotes cisplatin resistance and negatively impacts treatment outcomes. However, miR-155 can also boost anti-tumor immunity by suppressing PD-L1 expression. Therapeutic targeting of miR-155 through its antagonist, anti-miR-155, has proven challenging due to its dual molecular effects. METHODS: We developed a multiscale mechanistic model, calibrated with in vivo data and then extrapolated to humans, to investigate the therapeutic effects of nanoparticle-delivered anti-miR-155 in NSCLC, alone or in combination with standard-of-care drugs. RESULTS: Model simulations and analyses of the clinical scenario revealed that monotherapy with anti-miR-155 at a dose of 2.5 mg/kg administered once every three weeks has substantial anti-cancer activity. It led to a median progression-free survival (PFS) of 6.7 months, which compared favorably to cisplatin and immune checkpoint inhibitors. Further, we explored the combinations of anti-miR-155 with standard-of-care drugs, and found strongly synergistic two- and three-drug combinations. A three-drug combination of anti-miR-155, cisplatin, and pembrolizumab resulted in a median PFS of 13.1 months, while a two-drug combination of anti-miR-155 and cisplatin resulted in a median PFS of 11.3 months, which emerged as a more practical option due to its simple design and cost-effectiveness. Our analyses also provided valuable insights into unfavorable dose ratios for drug combinations, highlighting the need for optimizing dose regimens to prevent antagonistic effects. CONCLUSIONS: This work bridges the gap between preclinical development and clinical translation of anti-miR-155 and unravels the potential of anti-miR-155 combination therapies in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , MicroARNs/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/mortalidad , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Nivel de Atención , Investigación Biomédica Traslacional
3.
Mol Ther ; 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033323

RESUMEN

Patients with cancer of unknown primary (CUP) carry the double burden of an aggressive disease and reduced access to therapies. Experimental models are pivotal for CUP biology investigation and drug testing. We derived two CUP cell lines (CUP#55 and #96) and corresponding patient-derived xenografts (PDXs), from ascites tumor cells. CUP cell lines and PDXs underwent histological, immune-phenotypical, molecular, and genomic characterization confirming the features of the original tumor. The tissue-of-origin prediction was obtained from the tumor microRNA expression profile and confirmed by single-cell transcriptomics. Genomic testing and fluorescence in situ hybridization analysis identified FGFR2 gene amplification in both models, in the form of homogeneously staining region (HSR) in CUP#55 and double minutes in CUP#96. FGFR2 was recognized as the main oncogenic driver and therapeutic target. FGFR2-targeting drug BGJ398 (infigratinib) in combination with the MEK inhibitor trametinib proved to be synergic and exceptionally active, both in vitro and in vivo. The effects of the combined treatment by single-cell gene expression analysis revealed a remarkable plasticity of tumor cells and the greater sensitivity of cells with epithelial phenotype. This study brings personalized therapy closer to CUP patients and provides the rationale for FGFR2 and MEK targeting in metastatic tumors with FGFR2 pathway activation.

4.
Nat Commun ; 15(1): 5620, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965208

RESUMEN

Glutaminase (GLS) is directly related to cell growth and tumor progression, making it a target for cancer treatment. The RNA-binding protein HuR (encoded by the ELAVL1 gene) influences mRNA stability and alternative splicing. Overexpression of ELAVL1 is common in several cancers, including breast cancer. Here we show that HuR regulates GLS mRNA alternative splicing and isoform translation/stability in breast cancer. Elevated ELAVL1 expression correlates with high levels of the glutaminase isoforms C (GAC) and kidney-type (KGA), which are associated with poor patient prognosis. Knocking down ELAVL1 reduces KGA and increases GAC levels, enhances glutamine anaplerosis into the TCA cycle, and drives cells towards glutamine dependence. Furthermore, we show that combining chemical inhibition of GLS with ELAVL1 silencing synergistically decreases breast cancer cell growth and invasion. These findings suggest that dual inhibition of GLS and HuR offers a therapeutic strategy for breast cancer treatment.


Asunto(s)
Neoplasias de la Mama , Proteína 1 Similar a ELAV , Glutaminasa , Glutaminasa/metabolismo , Glutaminasa/genética , Glutaminasa/antagonistas & inhibidores , Proteína 1 Similar a ELAV/metabolismo , Proteína 1 Similar a ELAV/genética , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , ARN Mensajero/metabolismo , ARN Mensajero/genética , Regulación Neoplásica de la Expresión Génica , Empalme Alternativo , Proliferación Celular , Glutamina/metabolismo , Estabilidad del ARN
5.
Cell Death Discov ; 10(1): 293, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38906881

RESUMEN

Chronic lymphocytic leukemia (CLL) is a lymphoproliferative malignancy characterized by the proliferation of functionally mature but incompetent B cells. It is the most prevalent type of leukemia in Western populations, accounting for approximately 25% of new leukemia cases. While recent advances, such as ibrutinib and venetoclax treatment have improved patient outlook, aggressive forms of CLL such as Richter transformation still pose a significant challenge. This discrepancy may be due to the heterogeneity of factors contributing to CLL development at multiple -omics levels. However, information on the omics of CLL is fragmented, hindering multi-omics-based research into potential treatment options. To address this, we aggregated and presented a selection of important aspects of various omics levels of the disease in this review. The purpose of the present literature analysis is to portray examples of CLL studies from different omics levels, including genomics, epigenomics, transcriptomics, epitranscriptomics, proteomics, epiproteomics, metabolomics, glycomics and lipidomics, as well as those identified by multi-omics approaches. The review includes the list of 102 CLL-associated genes with relevant genomics information. While single-omics studies yield substantial and useful data, they omit a significant level of complex biological interplay present in the disease. As multi-omics studies integrate several different layers of data, they may be better suited for complex diseases such as CLL and have thus far yielded promising results. Future multi-omics studies may assist clinicians in improved treatment choices based on CLL subtypes as well as allow the identification of novel biomarkers and targets for treatments.

6.
Semin Hematol ; 61(3): 181-193, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38724414

RESUMEN

microRNAs (miRNAs) are a class of small non-coding RNAs that play a crucial regulatory role in fundamental biological processes and have been implicated in various diseases, including cancer. The first evidence of the cancer-related function of miRNAs was discovered in chronic lymphocytic leukemia (CLL) in the early 2000s. Alterations in miRNA expression have since been shown to strongly influence the clinical course, prognosis, and response to treatment in patients with CLL. Therefore, the identification of specific miRNA alterations not only enhances our understanding of the molecular mechanisms underlying CLL but also holds promise for the development of novel diagnostic and therapeutic strategies. This review aims to provide a comprehensive summary of the current knowledge and recent insights into miRNA dysregulation in CLL, emphasizing its pivotal roles in disease progression, including the development of the lethal Richter syndrome, and to provide an update on the latest translational research in this field.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , MicroARNs , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Regulación Leucémica de la Expresión Génica , Pronóstico , Progresión de la Enfermedad
7.
Noncoding RNA ; 10(2)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38668378

RESUMEN

Over the past decade, there have been reports of short novel functional peptides (less than 100 aa in length) translated from so-called non-coding RNAs (ncRNAs) that have been characterized using mass spectrometry (MS) and large-scale proteomics studies. Therefore, understanding the bivalent functions of some ncRNAs as transcripts that encode both functional RNAs and short peptides, which we named ncPEPs, will deepen our understanding of biology and disease. In 2020, we published the first database of functional peptides translated from non-coding RNAs-FuncPEP. Herein, we have performed an update including the newly published ncPEPs from the last 3 years along with the categorization of host ncRNAs. FuncPEP v2.0 contains 152 functional ncPEPs, out of which 40 are novel entries. A PubMed search from August 2020 to July 2023 incorporating specific keywords was performed and screened for publications reporting validated functional peptides derived from ncRNAs. We did not observe a significant increase in newly discovered functional ncPEPs, but a steady increase. The novel identified ncPEPs included in the database were characterized by a wide array of molecular and physiological parameters (i.e., types of host ncRNA, species distribution, chromosomal density, distribution of ncRNA length, identification methods, molecular weight, and functional distribution across humans and other species). We consider that, despite the fact that MS can now easily identify ncPEPs, there still are important limitations in proving their functionality.

8.
medRxiv ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38559070

RESUMEN

Elevated microRNA-155 (miR-155) expression in non-small-cell lung cancer (NSCLC) promotes cisplatin resistance and negatively impacts treatment outcomes. However, miR-155 can also boost anti-tumor immunity by suppressing PD-L1 expression. We developed a multiscale mechanistic model, calibrated with in vivo data and then extrapolated to humans, to investigate the therapeutic effects of nanoparticle-delivered anti-miR-155 in NSCLC, alone or in combination with standard-of-care drugs. Model simulations and analyses of the clinical scenario revealed that monotherapy with anti-miR-155 at a dose of 2.5 mg/kg administered once every three weeks has substantial anti-cancer activity. It led to a median progression-free survival (PFS) of 6.7 months, which compared favorably to cisplatin and immune checkpoint inhibitors. Further, we explored the combinations of anti-miR-155 with standard-of-care drugs, and found strongly synergistic two- and three-drug combinations. A three-drug combination of anti-miR-155, cisplatin, and pembrolizumab resulted in a median PFS of 13.1 months, while a two-drug combination of anti-miR-155 and cisplatin resulted in a median PFS of 11.3 months, which emerged as a more practical option due to its simple design and cost-effectiveness. Our analyses also provided valuable insights into unfavorable dose ratios for drug combinations, highlighting the need for optimizing dose regimen to prevent antagonistic effects. Thus, this work bridges the gap between preclinical development and clinical translation of anti-miR-155 and unravels the potential of anti-miR-155 combination therapies in NSCLC.

9.
Cancer Immunol Immunother ; 73(5): 85, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38554185

RESUMEN

TGF-ß1 and TGF-ßR1 play important roles in immune and inflammatory responses. Genetic variants of TGF-ß1 rs1800470 and TGF-ßR1 rs334348 have emerged as potentially prognostic biomarkers for HPV-related head and neck cancer, while their prognostic effect on survival of smoking-related head and neck cancer remains unknown. This study included 1403 patients with smoking-related head and neck cancer, and all these patients were genotyped for TGF-ß1 rs1800470 and TGF-ßR1 rs334348. Both univariate and multivariate analyses were performed to evaluate associations between the two functional genetic variants in microRNA binding sites of TGF-ß1 and TGF-ßR1 and survivals. Patients with TGF-ß1 rs1800470 CT or CC genotype had 30-35% risk reductions for OS, DSS, and DFS compared to patients with TT genotype among overall patients, ever smokers, and patients administered chemoradiation. Furthermore, patients with TGF-ßR1 rs334348 GA or GG genotype had significant 50-60% risk reductions for OS, DSS, and DFS compared to patients with AA genotype among overall patients and patients administered chemoradiation; among ever smokers, the risk reductions even reached 60-70%. The TCGA dataset was used for validation. These findings suggest that TGF-ß1 rs1800470 and TGF-ßR1 rs334348 significantly affect survival outcomes in patients with smoking-related head and neck cancer, especially in the subgroups of ever smokers and patients treated with chemoradiation. These genetic variants may serve as prognostic indicators for patients with smoking-related head and neck cancer and could play a role in advancing the field of personalized chemoradiation, thereby improving patient survival and quality of life.


Asunto(s)
Neoplasias de Cabeza y Cuello , MicroARNs , Humanos , MicroARNs/genética , Factor de Crecimiento Transformador beta1/genética , Calidad de Vida , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/terapia , Fumar/efectos adversos
11.
Cells ; 13(1)2023 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-38201290

RESUMEN

MicroRNAs (miRNAs) are a type of non-coding RNA whose dysregulation is frequently associated with the onset and progression of human cancers. miR-142, an ultra-conserved miRNA with both active -3p and -5p mature strands and wide-ranging physiological targets, has been the subject of countless studies over the years. Due to its preferential expression in hematopoietic cells, miR-142 has been found to be associated with numerous types of lymphomas and leukemias. This review elucidates the multifaceted role of miR-142 in human physiology, its influence on hematopoiesis and hematopoietic cells, and its intriguing involvement in exosome-mediated miR-142 transport. Moreover, we offer a comprehensive exploration of the genetic and molecular landscape of the miR-142 genomic locus, highlighting its mutations and dysregulation within hematological malignancies. Finally, we discuss potential avenues for harnessing the therapeutic potential of miR-142 in the context of hematological malignancies.


Asunto(s)
Exosomas , Neoplasias Hematológicas , Leucemia , MicroARNs , Humanos , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/terapia , Leucemia/genética , Leucemia/terapia , Exosomas/genética , Genómica , MicroARNs/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...